精英家教网 > 初中数学 > 题目详情
(1)如图1,在△ABC中,∠C=90°,∠BAC=45°,∠BAC的平分线与外角∠CBE的平分线相交于点D,则∠D=
 
度.
(2)如图2,将(1)中的条件“∠BAC=45°”去掉,其他条件不变,求∠D的度数.
考点:三角形内角和定理,三角形的外角性质
专题:
分析:(1)由三角形外角的性质,可得∠C=∠CBE-∠CAB,∠D=∠2-∠1,又由∠BAC的平分线与外角∠CBE的平分线相交于点D,根据角平分线的性质,可得∠1=
1
2
∠CAB,∠2=
1
2
∠CBE,继而可求得答案;
(2)由三角形外角的性质,可得∠C=∠CBE-∠CAB,∠D=∠2-∠1,又由∠BAC的平分线与外角∠CBE的平分线相交于点D,根据角平分线的性质,可得∠1=
1
2
∠CAB,∠2=
1
2
∠CBE,继而可求得答案.
解答:解:(1)∵∠CBE是△ABC的外角,
∴∠CBE=∠CAB+∠C,
∴∠C=∠CBE-∠CAB,
∵∠BAC的平分线与外角∠CBE的平分线相交于点D,
∴∠1=
1
2
∠CAB,∠2=
1
2
∠CBE,
∵∠2是△ABD的外角,
∴∠2=∠1+∠D,
∴∠D=∠2-∠1=
1
2
(∠CBE-∠CAB)=
1
2
∠C=
1
2
×90°=45°;
故答案为:45;

(2)∵∠CBE是△ABC的外角,
∴∠CBE=∠CAB+∠C,
∴∠C=∠CBE-∠CAB,
∵∠BAC的平分线与外角∠CBE的平分线相交于点D,
∴∠1=
1
2
∠CAB,∠2=
1
2
∠CBE,
∵∠2是△ABD的外角,
∴∠2=∠1+∠D,
∴∠D=∠2-∠1=
1
2
(∠CBE-∠CAB)=
1
2
∠C=
1
2
×90°=45°.
点评:此题考查了三角形外角的性质与角平分线的定义.此题难度适中,注意掌握数形结合思想与整体思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,同心圆的半径为6,8,AB为小圆的弦,CD为大圆的弦,且ABCD为矩形,若矩形ABCD面积最大时,矩形ABCD的周长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

计算与解方程:
(1)-32+(-
5
2
)2×(-
4
25
)+|-22|+(-1)2013

(2)12°24′17″×4-30°27′8″;
(3)4x-3(2x-4)=6x+4(7-3x);
(4)
2x-1
3
-
3x+1
2
=
5x+2
4
-1

查看答案和解析>>

科目:初中数学 来源: 题型:

已知a,b,c在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c-2b|的结果是(  )
A、0B、4b
C、-2a-2cD、2a-4b

查看答案和解析>>

科目:初中数学 来源: 题型:

解方程组
ax+2y=7
cx-dy=4
时,一学生把a看错后得到
x=5
y=1
,而正确的解是
x=3
y=-1
,则a、c、d的值为(  )
A、不能确定
B、a=3、c=1、d=1
C、a=3 c、d不能确定
D、a=3、c=2、d=-2

查看答案和解析>>

科目:初中数学 来源: 题型:

若多项式x2+kxy+xy-2中不含xy项,且k2-(2a-1)=0,化简求(k+2a)2-(k-2a)2-2k(k-1)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在梯形ABCD中,AB∥CD,AB=2CD,
AB
=
a
AD
=
b
,那么
BC
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直线AC与x轴交于点A(4,0),与y轴交于点C(0,4).作OB⊥AC于点B,动点D在边OA上,D(m,0)(0<m<4),过点D作DE⊥OA交折线OB-BA于点E.Rt△GHI的斜边HI在射线AC上,GI∥OA,GI=m,GI与x轴的距离为
m
2
.设△GHI与△OAB重叠部分图形的面积为S.
(1)求直线AC所对应的函数关系式.
(2)直接写出用m分别表示点G、H、I的坐标.
(3)当0<m<2时,求S与m之间的函数关系式.
(4)直接写出点E落在△GHI的边上时m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

某班同学上学期全部参加了捐款活动,捐款情况如下统计表:
金额(元) 5 10 15 20 25 30
人数(人) 8 12 10 6 2 2
(1)求该班学生捐款额的平均数和中位数;
(2)试问捐款额多于15元的学生数是全班人数的百分之几?
(3)已知这笔捐款是按3:5:4的比例分别捐给灾区民众、重病学生、孤老病者三种被资助的对象,问该班捐给重病学生是多少元?

查看答案和解析>>

同步练习册答案