精英家教网 > 初中数学 > 题目详情

已知,在△ABC的外接圆O中,D是的中点,AD交BC于点E,连结BD.

(1)列出图中所有相似三角形;

(2)连结DC,若在上任取一点K(点A、B、C除外),连结CK、DK;DK交BC于点F,DC2=DF?DK是否成立?若成立,给出证明;若不成立,举例说明.

解(1)△BDE∽△CAE,△DBE∽△DAB,△ABD∽△AEC.

(2)DC2=DF?DK成立.

证明:∵D是的中点,

∴∠DBC=∠DCB,

又∵

∴∠DCB=∠DKC,

又∠KDC=∠CDF

∴△KDC∽△CDF,

,∴DC2=DF?DK.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,在△ABC中,∠A=30°,∠B=135°,CD⊥AB,且CD=1.若以点A为圆心,
3
为半径作⊙A,以点B为圆心,1为半径作⊙B,则⊙A与⊙B的位置关系是(  )
A、内切B、外切C、相交D、外离

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,在△ABC中,AB=AC,在图(1)中,点O是△ABC内的任意一点,而在图(2)中,点O是△ABC外的任意一点.在两图中,分别以OB,OC为边画出平行四边形OBDC,连接并延长OA到E,使得AE=OA,再连接DE.观察两图,写出与线段DE有关的两个猜想,并在其中的一个图形中给出证明.(要求:在猜想中不能出现已知中未标的字母.)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•浦口区一模)提出问题:
如图,在△ABC中,∠A=90°,分别以边AB、AC向外作正方形ABDE和正方形ACFG,连接EG,小亮发现△ABC与△AEG面积相等.小亮思考:这个问题中,如果∠A≠90°,那么△ABC与△AEG面积是否仍然相等?
猜想结论:
经过研究,小亮认为:上述问题中,对于任意△ABC,分别以边AB、AC向外作正方形ABDE 和正方形 ACFG,连接EG,那么△ABC与△AEG面积相等.
证明猜想:
(1)请你帮助小亮画出图形,并完成证明过程.已知:以△ABC的两边AB、AC为边长分别向外作正方形ABDE、ACFG,连接GE.求证:S△AEG=S△ABC
结论应用:
(2)学校教学楼前的一个六边形花圃被分成七个部分,分别种上不同品种的花卉,其中四边形ABCD、CIHG、GFED均为正方形,且面积分别为9m2、5m2和4m2.求这个六边形花圃ABIHFE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知,在△ABC中,AB=AC,在图(1)中,点O是△ABC内的任意一点,而在图(2)中,点O是△ABC外的任意一点.在两图中,分别以OB,OC为边画出平行四边形OBDC,连接并延长OA到E,使得AE=OA,再连接DE.观察两图,写出与线段DE有关的两个猜想,并在其中的一个图形中给出证明.(要求:在猜想中不能出现已知中未标的字母.)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知,在△ABC中,∠A=30°,∠B=135°,CD⊥AB,且CD=1.若以点A为圆心,
3
为半径作⊙A,以点B为圆心,1为半径作⊙B,则⊙A与⊙B的位置关系是(  )
A.内切B.外切C.相交D.外离

查看答案和解析>>

同步练习册答案