精英家教网 > 初中数学 > 题目详情
在Rt△ABC中,∠ACB=90°,AC=3,BC=4.以点C为圆心,R为半径的圆与边AB(边AB为线段)仅有一个公共点,则R的值为(  )
A.R>3B.R=
12
5
C.R=
12
5
或3<R≤4
D.无法确定
如图,根据勾股定理求得AB=5.
∵BC>AC,
∴以C为圆心,R为半径所作的圆与斜边AB只有一个公共点.
分两种情况:
(1)圆与AB相切时,即R=CD=3×4÷5=
12
5

(2)点A在圆内部,点B在圆上或圆外时,此时AC<R≤BC,即3<R≤4.
R=
12
5
或3<R≤4

故选:C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径的⊙0与边AC相切于点E,连接DE并延长,与BC的延长线交于点F.
(1)求证:BD=BF;
(2)若BC=12,AD=8,求BF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在矩形ABCD中,点O在对角线BD上,以OD为半径的⊙O与AD、BD分别交于点E、F,且∠ABE=∠DBC.
(1)求证:BE与⊙O相切;
(2)若sin∠ABE=
1
3
,CD=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O′经过⊙O的圆心,E、F是两圆的交点,直线OO′交⊙O′于点P,交EF于点C,交⊙O于点Q,且EF=2
15
,sin∠P=
1
4

(1)求证:PE是⊙O的切线;
(2)求⊙O和⊙O′的半径的长;
(3)若点A在劣弧
QF
上运动(与点Q、F不重合),连接PA交劣弧
DF
于点B,连接BC并延长交⊙O于点G,设CG=x,PA=y,求y关于x的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,AB是⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,求证:AC平分∠DAB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,过点D作DE⊥AC,垂足为E.
(1)求证:DE是⊙O的切线;
(2)如果BC=8,AB=5,求CE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知⊙O和不在⊙O上的一点P,过P直线交⊙O于A、B点,若PA•PB=4,OP=5,则⊙O的半径为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知O为原点,点A的坐标为(4,3),⊙A的半径为2,过A作直线L平行于x轴,点P在直线L上运动.
(1)当点P在⊙A上时,请直接写出它的坐标;
(2)设点P的横坐标为6
2
,试判断直线OP与⊙A的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O1和⊙O2内切于点P,且⊙O1过点O2,PB是⊙O2的直径,A为⊙O2上的点,连接AB,过O1作O1C⊥BA于C,连接CO2.已知PA=
4
3
,PB=4.
(1)求证:BA是⊙O1的切线;
(2)求∠BCO2的正切值.

查看答案和解析>>

同步练习册答案