精英家教网 > 初中数学 > 题目详情
如图,⊙O′经过⊙O的圆心,E、F是两圆的交点,直线OO′交⊙O′于点P,交EF于点C,交⊙O于点Q,且EF=2
15
,sin∠P=
1
4

(1)求证:PE是⊙O的切线;
(2)求⊙O和⊙O′的半径的长;
(3)若点A在劣弧
QF
上运动(与点Q、F不重合),连接PA交劣弧
DF
于点B,连接BC并延长交⊙O于点G,设CG=x,PA=y,求y关于x的函数关系式,并写出自变量x的取值范围.
(1)证明:连接OE,
∵OP是⊙O'的直径,
∴∠OEP=90°.
∴PE是⊙O的切线.

(2)设⊙O、⊙O'的半径分别为r,r'
∵⊙O与⊙O'交于E、F,
∴EF⊥OO',EC=
1
2
EF=
15

∴在Rt△EOC、Rt△POE中,∠OEC=∠OPE.
∴sin∠OEC=sin∠OPE=
1
4

∴sin∠OEC=
OC
OE
=
OC
r
=
1
4

即OC=
1
4
r,
r2-
1
16
r2=15
,解得r=4.
Rt△OPE中,sin∠OPE=
OE
OP
=
r
2r′

∴r'=8.

(3)连接OF,
∵∠OEP=90°,CE⊥OP,
∴PE2=PC•PO.
又∵PE是⊙O的切线,
∴PE2=PB•PA.
∴PC•PO=PB•PA.
PC
PA
=
PB
PO

又∵∠CPB=∠APO,
∴△CPB△APO.
BC
OA
=
PC
PA

BC=
60
PA

由相交弦定理,得BC•CG=CF•CE.
BC=
15
CG

∴PA=4CG.
即y=4x(
15
<x<5
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,△ABC内接于⊙O,PA,PB是切线,A、B分别为切点,若∠APB=62°,则∠C=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:AB为⊙O的直径,∠A=∠B=90°,DE与⊙O相切于E,⊙O的半径为
5
,AD=2.
①求BC的长;
②延长AE交BC的延长线于G点,求EG的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点P在⊙O的直径BA的延长线上,AB=2PA=4cm,PC切⊙O于点C,连接BC,求BC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知,如图,AB是⊙O的直径,DC切⊙O于点C,AB=2BC,则∠BCD=______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于点E,交BC的延长线于点F.
求证:
(1)AD=BD;
(2)DF是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在Rt△ABC中,∠ACB=90°,AC=3,BC=4.以点C为圆心,R为半径的圆与边AB(边AB为线段)仅有一个公共点,则R的值为(  )
A.R>3B.R=
12
5
C.R=
12
5
或3<R≤4
D.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,两个半圆,大半圆中长为16cm的弦AB平行于直径CD,且与小半圆相切,则图中阴影部分的面积为______cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AC为⊙O直径,B为AC延长线上的一点,BD交⊙O于点D,∠BAD=∠B=30°.
(1)求证:BD是⊙O的切线;
(2)AB=3CB吗?请说明理由.

查看答案和解析>>

同步练习册答案