精英家教网 > 初中数学 > 题目详情
2.某景点门票价格:成人票每张7元,儿童票每张14元.导游买20张门票共花了245元,求其中有多少张成人票?多少张儿童票?

分析 设买了x张成人票,y张儿童票,根据买20张门票共花了245元,列方程组求解.

解答 解:设买了x张成人票,y张儿童票,
由题意得,$\left\{\begin{array}{l}{x+y=20}\\{7x+14y=245}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=5}\\{y=15}\end{array}\right.$.
答:买了5张成人票,15张儿童票.

点评 本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.如图,在△ABC中,D是BC的中点,E是AD的中点,过A点作BC的平行线交BE的延长线于F,连接CF.
(1)求证:四边形ADCF是平行四边形;
(2)如果AB⊥AC,试猜测四边形ADCF是怎样的特殊平行四边形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.在Rt△ABC中,已知∠C=90°,a=16,c=28,解这个直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图1,已知抛物线y=$\frac{1}{2}$x2+bx+c与x轴交于点A(-4,0)和B(1,0),与y轴交于C点.

(1)求此抛物线的解析式;
(2)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q,当P点运动到什么位置时,线段PQ的长最大,并求此时P点的坐标;
(3)设E是线段AB上的动点,作EF∥AC交BC于F,连接CE,当△CEF的面积是△BEF面积的2倍时,求E点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.一位鞋店的经理,为了解鞋子的销售情况,随机调查了一个月销售的鞋子的尺码,对这组数据的分析中,鞋店的经理最感兴趣的是这组数据的(  )
A.平均数B.中位数C.众数D.方差

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.已知$\sqrt{253.6}$=15.906,$\sqrt{25.36}$=5.036,那么$\sqrt{253600}$的值为(  )
A.159.06B.50.36C.1590.6D.503.6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,抛物线y=-x2+bx+c的顶点为D(-1,4),与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的左侧).
(1)求抛物线的解析式;
(2)连接AC,CD,AD,试证明△ACD为直角三角形;
(3)若点E在抛物线上,EF⊥x轴于点F,以A、E、F为顶点的三角形与△ACD相似,试求出所有满足条件的点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,△ABC中,DE∥AC,EF∥AB,∠BED=∠CEF,
(1)试说明△ABC是等腰三角形,
(2)探索AB+AC与四边形ADEF的周长关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.九(1)班举行演讲比赛中有一个抽奖活动,活动规则是:进入最后决赛的甲、乙两位同学,每人只有一次抽奖机会,在如图所示的翻奖牌正面的4个数字钟任选一个数字,选中后可以得到该数字后面的奖品,第一人选中的数字,第二人就不能再选择该数字.
(1)求第一位抽奖的同学抽中计算器的概率是多少?
(2)有同学认为,如果甲先抽,那么他抽到成语词典的概率会大些,你同意这种说法吗?并用别表格或画树状图的方式加以说明.

查看答案和解析>>

同步练习册答案