精英家教网 > 初中数学 > 题目详情

如图:已知△ABC中,AB=AC,D是BC的中点,过D作DE⊥AB,DF⊥AC,说明AE=AF的理由.

证明:∵AB=AC,
∴∠B=∠C.
∵DE⊥AB,DF⊥AC,
∴∠DEB=∠DFC=90°.
∵D是BC的中点,
∴BD=CD.
在△BDE与△CDF中,

∴△BDE≌△CDF(AAS),
∴BE=CF,
∴AB-BE=AC-CF,
即AE=AF.
分析:先根据AAS可证明△BDE≌△CDF,得出BE=CF,再由等式的基本性质得出AE=AF.
点评:本题考查了全等三角形的判定和性质以及等腰三角形的性质,是基础知识要熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC中,AB=AC,E、F分别在AB、AC上且AE=CF.
求证:EF≥
12
BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,P是AB上一点,连接CP,以下条件不能判定△ACP∽△ABC的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•梓潼县一模)如图,已知△ABC中,∠C=90°,AC=4,BC=3,则sinA=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,BC=8,BC边上的高h=4,D为BC上一点,EF∥BC交AB于E,交AC于F(EF不过A、B),设E到BC的距离为x,△DEF的面积为y,那么y关于x的函数图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AB=AC,D是BC中点,则下列结论不正确的是(  )

查看答案和解析>>

同步练习册答案