精英家教网 > 初中数学 > 题目详情
(2004•西藏)如图,在大街的两侧分别有甲、乙两栋楼房AB、CD,已知甲楼AB的高为30cm,在楼顶A处测得乙楼CD的楼顶C的仰角(即图中∠EAC)为30°,测得乙楼楼底D的俯角(即图中∠EAD)为45°,求乙楼的高CD(精确到1m,参考数据
2
=1.414,
3
=1.732).
分析:过A作AE⊥CD于E,则∠CAE=30°,∠DAE=45°,AB=DE,再由直角三角形的性质得出DE的长,由锐角三角函数的定义即可求出CE的长,再由CD=CE+DE即可得出结论.
解答:解:过A作AE⊥CD于E,则∠CAE=30°,∠DAE=45°,AB=DE=30m,
∵∠DAE=45°,AE⊥CD,
∴∠DAE=45°,
∴AE=DE=30米,
在Rt△ACE中,CE=AE•tan∠CAE=30×
3
3
=10
3
米,
∴CD=CE+DE=30+10
3
≈47米,
答:乙楼的高CD为47米.
点评:本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2004•西藏)如图,P是∠AOB的平分线OC上一点(不与O重合),过P分别向角的两边作垂线PD、PE,垂足是D、E,连结DE,那么图中全等的直角三角形共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2004•西藏)如图,P是⊙O外一点,PO的延长线交⊙O于C,AB是⊙O的弦,且AB⊥PC,连结PA、PB,根据这些已知条件,不再添加辅助线,写出你能得出的三个结论:
AD=BD,
AC
=
BC
,AP=BP
AD=BD,
AC
=
BC
,AP=BP

查看答案和解析>>

科目:初中数学 来源: 题型:

(2004•西藏)已知,如图,直线y=8-2x与y轴交于点A,与x轴交于点B,直线y=x+b与y轴交于点C,与x轴交于点D,如果两直线交于点P,且AC:CO=3:5(AO>CO).
(1)求点A、B的坐标;
(2)求四边形COBP的面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2004•西藏)已知,如图,P是⊙O外一点,PC切⊙O于点C,割线PO交⊙O于点B、A,且AC=PC.
(1)求证:△PBC≌AOC;
(2)如果PB=2,点M在⊙O的下半圈上运动(不与A、B重合),求当△ABM的面积最大时,AC•AM的值.

查看答案和解析>>

同步练习册答案