精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,点P是线段AD上一动点,OBD的中点,PO的延长线交BC于点Q。

(1)求证:OP=OQ;

(2)若AD=8cm,AB=6cm,P从点A出发,以1cm/秒的速度向点D运动(不与点D重合),设点P运动时间为t秒,请用t表示PD的长;并求当t为何值时,四边形PBQD是菱形。

【答案】(1)证明见解析(2)

【解析】分析:(1)由矩形ABCD中,O为BD的中点,易证得△PDO≌△QBO(ASA),继而证得OP=OQ;(2)AD=8cm,AP=tcm,即可用t表示PD的长;

(3)由四边形PBQD是菱形,可得PB=PD,即可得AB+AP=PD,继而可得方程6+t=(8-t),解此方程即可求得答案

本题解析:.

解:(1)∵四边形ABCD是矩形,∴AD∥BC,

∴∠PDO=∠QBO,∵O为BD的中点,∴DO=BO,

在△PDO和△QBO中,

∴△PDO≌△QBO(ASA),∴OP=OQ;

(2)由题意知:AD=8cm,AP=tcm,∴PD=8﹣t,

(3)∵PB=PD,∴PB2=PD2,即AB2+AP2=PD2

∴62+t2=(8-t)2,解得 t=

∴当t=时,PB=PD.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,等边ABC的边长是2,D、E分别为AB、AC的中点,过E点作EFDCBC的延长线于点F,连接CD.

(1)求证:四边形CDEF是平行四边形;

(2)求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点AD1cm/s的速度运动,到D点即停止.点Q自点CB2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒时其中一个四边形为平行四边形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】7张如图1所示的长为a,宽为b(a>b)的小长方形纸片按图2所示的方式不重叠地放在长方形ABCD内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,求ab满足的条件.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,这是一种数值转换机的运算程序.

(1)若第1次输入的数为2,则第1次输出的数为1,那么第2次输出的数为4;若第1次输入的数为12,则第5次输出的数为__________

(2)若输入的数为5,求第2016次输出的数是多少.

(3)是否存在输入的数x,使第3次输出的数是x?若存在,求出所有x的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,﹣ ).

(1)求抛物线的函数解析式及点A的坐标;
(2)在抛物线上求点P,使SPOA=2SAOB
(3)在抛物线上是否存在点Q,使△AQO与△AOB相似?如果存在,请求出Q点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P为反比例函数y= (x>0)图象上一点,过点P分别向x轴,y轴作垂线,垂足分别为M、N,直线y=﹣x+2与PM、PN分别交于点E、F,与x轴、y轴分别交于A、B,则AFBE的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,BC、AD是⊙O的切线,切点分别为B、A,过点O作EC⊥OD,EC交BC于点C,交AD于点E.
(1)求证:CE是⊙O的切线;
(2)若AE=1,AD=3,求阴影部分的面积.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下列四个图案中,既是轴对称图形,又是中心对称图形是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案