【题目】概念考察.
(1)公理: 的两个三角形全等,(简称 ,字母表示 )
(2)公理: 的两个三角形全等,(简称 ,字母表示 )
(3)公理: 的两个三角形全等,(简称 ,字母表示 )
(4)判定: 的两个三角形全等.(字母表示:AAS)
(5)简述“三线合一”: .
(6)勾股定理的内容是: .
(7)线段垂直平分线上的点到这条线段两个端点的距离 .
(8)角平分线上的点到角两边的距离 .
【答案】(1)两边和它们的夹角对应相等,边角边,SAS;
(2)三边对应相等,简称:边边边或SSS
(3)两角和它们的夹边对应相等,角边角,ASA
(4)两角和其中一角的对边对应相等,角角边,AAS;
(5)等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合;
(6)直角三角形的两条直角边长的平方和等于斜边的平方;
(7)相等;
(8)相等.
【解析】
试题分析:根据三角形全等的判定方法、等腰三角形的性质、勾股定理、线段垂直平分线的性质以及角平分线的性质即可得出结果.
解:(1)两边和它们的夹角对应相等的两个三角形全等,简称:边角边或SAS;
故答案为:两边和它们的夹角对应相等,边角边,SAS;
(2)三边对应相等的两个三角形全等,边边边,SSS;
故答案为:三边对应相等,简称:边边边或SSS
(3)两角和它们的夹边对应相等的两个三角形全等,简称:角边角或ASA;
故答案为:两角和它们的夹边对应相等,角边角,ASA
(4)两角和其中一角的对边对应相等的两个三角形全等,简称:角角边或AAS;
故答案为:两角和其中一角的对边对应相等,角角边,AAS;
(5)三线合一:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合;
故答案为:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合;
(6)勾股定理:直角三角形的两条直角边长的平方和等于斜边的平方;
故答案为:直角三角形的两条直角边长的平方和等于斜边的平方;
(7)线段垂直平分线上的点到这条线段两个端点的距离相等;
故答案为:相等;
(8)角平分线上的点到角两边的距离相等;
故答案为:相等.
科目:初中数学 来源: 题型:
【题目】暑假期间,两位家长计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家旅行社。经协商,甲旅行社的优惠条件是:两位家长全额收费,学生都按七折收费;乙旅行社的优惠条件是:家长、学生都按八折收费。假设这两位家长带领x名学生去旅游,他们应该选择哪家旅行社?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com