【题目】anbn+1·(abn)3________________
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数y=k1x+b的图象与x轴交于点A(-3,0),与y轴交于点B,且与正比例函数y=kx的图象交点为C(3,4).
(1)求正比例函数与一次函数的关系式;
(2)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,请求出点D的坐标;
(3)在x轴上是否存在一点E使△BCE周长最小,若存在,求出点E的坐标
(4)在x轴上求一点P使△POC为等腰三角形,请直接写出所有符合条件的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=BC,△ABC的高CD与角平分线AE相交点F,过点C作CH⊥AE于G,交AB于H.
(1)求∠BCH的度数;
(2)求证:CE=BH.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ABC与∠ACB的平分线相交于点O.过点O作EF∥BC.分别交AB和AC于点E、F.
(l)你能发现哪些结论,把它们写出来.并选择一个加以证明;
(2)若AB=10,AC=8.试求△AFF的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图8,四边形ABEG、GEFH、HFCD都是边长为1的正方形.
(1)求证:△AEF∽△CEA;
(2)求证:∠AFB+∠ACB=45°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( )
A. ∠1=60°,2=40° B. ∠1=50°,∠2=40°
C. ∠1=∠2=40° D. ∠1=∠2=45°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD和CE相交于点F,若△ABC不动,将△ADE绕点A任意旋转一个角度.
(1)求证:△BAD≌△CAE.
(2)如图①,若∠BAC=∠DAE=90°,判断线段BD与CE的关系,并说明理由;
(3)如图②,若∠BAC=∠DAE=60°,求∠BFC的度数;
(4)如图③,若∠BAC=∠DAE= ,直接写出∠BFC的度数(不需说明理由)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com