精英家教网 > 初中数学 > 题目详情

【题目】如图,反比例函数y= 的图象经过A、B两点,过点A作AC⊥x轴,垂足为C,过点B作BD⊥x轴,垂足为D,连接AO,连接BO交AC于点E,若OC=CD,四边形BDCE的面积为1,则k的值为

【答案】﹣
【解析】解:设点B坐标为(a,b),则DO=﹣a,BD=b

∵AC⊥x轴,BD⊥x轴

∴BD∥AC

∵OC=CD

∴CE= BD= b,CD= DO= a,

∵四边形BDCE的面积为1,

(BD+CE)×CD=1,即 (b+ b)×(﹣ a)=1,

∴ab=﹣

将B(a,b)代入反比例函数 ,得

k=ab=﹣

所以答案是:﹣

【考点精析】解答此题的关键在于理解比例系数k的几何意义的相关知识,掌握几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】林湾乡修建一条灌溉水渠,如图,水渠从A村沿北偏东65°方向到B村,从B村沿北偏西25°方向到C村水渠从C村沿什么方向修建,可以保持与AB的方向一致?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DE分别是△ABCABBC上的点,AD=2BDBE=CE.若SΔABC=18,△ADF的面积为,△CFE的面积为,则=________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,CDAB边上的高,AC=4,BC=3,DB=

求:(1)求AD的长;

(2)△ABC是直角三角形吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明今年五一节去三峡广场逛水果超市,他分两次购进了两种不同单价的水果.第一次购买种水果的数量比种水果的数量多50%,第二次购买种水果的数量比第一次购买种水果的数量少60%,结果第二次购买水果的总数量比第一次购买水果的总数量多20%,且第二次购买水果的总费用比第一次购买水果的总费用少10%(两次购买中两种水果的单价不变),则种水果的单价与种水果的单价的比值是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017怀化,第10题,4分)如图,AB两点在反比例函数的图象上,CD两点在反比例函数的图象上,ACy轴于点EBDy轴于点FAC=2BD=1EF=3,则的值是(  )

A. 6 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:

(1)本次抽取样本容量为 , 扇形统计图中A类所对的圆心角是度;
(2)请补全统计图;
(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】点燃一根蜡烛后,蜡烛的高度h(厘米)与燃烧时间t(分)之间的关系如下表:

t/分

0

2

4

6

8

10

h/厘米

30

29

28

27

26

25

写出蜡烛的高度h(厘米)与燃烧时间t(分)之间的关系式_____;这根蜡烛最多能燃烧的时间为_____分.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB两点在直线m上,CD两点在直线n上,BAD=α,∠BCD=β

1)如图1,若BAD=ADC,求证ABC=BCD

2)如图2mn,过点DDEBC于点E,∠BADDEB的角平分线相交于点P,求∠P(用αβ的式子表示)

3)在(2)的条件下,若点A沿直线m向右运动,且不与B点重合,则APE= (αβ的式子表示,不写证明过程).

查看答案和解析>>

同步练习册答案