精英家教网 > 初中数学 > 题目详情
24、已知关于x的方程x2-2mx+3m=0的两个实数根为x1、x2,且(x1-x22=16.如果关于x的另一方程x2-2mx+6m-9=0的两个实数根都在x1和x2之间,求m的值.
分析:先利用第一个方程中的条件,利用根于系数的关系求得m的值,再把m代入第二个方程求得另一个方程的解,并根据条件求出符合题意的m值.
解答:解:∵x1,x2是方程x2-2mx+3m=0①的两个实数根,
∴x1+x2=2m,x1•x2=3m.
∵(x1-x22=16,
∴(x1+x22-4x1x2=16.
∴4m2-12m=16.
解得m1=-1,m2=4,

(1)当m=-1时,
方程x2-2mx+3m=0化为:x2+2x-3=0.
解得:x1=-3,x2=1.
方程x2-2mx+6m-9=0化为:x2+2x-15=0.
解得:x'1=-5,x'2=3.
∵-5、3不在-3和1之间,
∴m=-1不合题意,舍去.

(2)当m=4时,
方程x2-2mx+3m=0化为:x2-8x+12=0,
解得:x1=2,x2=6.
方程x2-2mx+6m-9=0化为:x2-8x+15=0,
解得:x'1=3,x'2=5.
∵2<3<5<6,即x1<x'1<x'2<x2
∴方程x2-2mx+6m-9=0的的两根都在方程x2-2mx+3m=0的两根之间.
∴m=4,
综合(1)(2),m=4.
点评:本题考查了根与系数的关系,本题中有重要的两个步骤要注意,一是利用第一个方程的条件先求出m的值,二是要把解出的m值代入第二个方程求得x的值并利用题中条件检验,符合题意的m值才是方程中的m值
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、已知关于x的方程x2+kx+1=0和x2-x-k=0有一个根相同,则k的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绵阳)已知关于x的方程x2-(m+2)x+(2m-1)=0.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•西城区二模)已知关于x的方程x2+3x=8-m有两个不相等的实数根.
(1)求m的最大整数是多少?
(2)将(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-2(k+1)x+k2=0有两个实数根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-(3k+1)x+2k2+2k=0
(1)求证:无论k取何实数值,方程总有实数根.
(2)若等腰△ABC的一边长为a=6,另两边长b,c恰好是这个方程的两个根,求此三角形的周长.

查看答案和解析>>

同步练习册答案