20£®Èçͼ£¬ËıßÐÎOABCµÄ±ßOA¡¢OC·Ö±ðÔÚxÖá¡¢yÖáµÄÕý°ëÖáÉÏ£¬¹ýµãB×÷BM¡ÍyÓÚµãM£¬OE=OA=3£¬OD=1£¬Á¬½ÓAE¡¢BE¡¢DE£®ÒÑÖªtan¡ÏCBE=$\frac{1}{3}$£¬B£¨1£¬4£©£®
£¨1£©ÇóÖ¤£º¡÷AEO¡×¡÷BEM£»
£¨2£©ÇóÖ¤£ºCBÊÇ¡÷ABEÍâ½ÓÔ²µÄÇÐÏߣ»
£¨3£©Éè¡÷AOEÑØxÖáÕý·½ÏòÆ½ÒÆt¸öµ¥Î»³¤¶È£¨0£¼t¡Ü3£©Ê±£¬¡÷AOEÓë¡÷ABEÖØµþ²¿·ÖµÄÃæ»ýΪs£¬ÇósÓëtÖ®¼äµÄº¯Êý¹ØÏµÊ½£¬²¢Ö¸³ötµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©¸ù¾ÝµãBµÄ×ø±êµÃµ½MB=1£¬OM=4£¬ÀûÓÃOA=OC£¬µÃµ½¡ÏOAE=¡ÏOEA=45¡ã£¬ÔÚRt¡÷EMBÖУ¬EM=OM-OE=1=BM£¬ËùÒÔ¡ÏMEB=¡ÏMBE=45¡ã£¬µÃµ½¡ÏOAE=¡ÏMBE=45¡ã£¬¡ÏOEA=¡ÏMEB=45¡ã£¬´Ó¶øµÃµ½¡÷AEO¡«¡÷BEM£®
£¨2£©ÓÉ£¨1£©Öª£¬¡ÏOEA+¡ÏMEB=90¡ã£¬Çó³ö¡ÏBEA=180¡ã-¡ÏOEA-¡ÏMEB=90¡ã£¬µÃµ½ABÊÇ¡÷ABEÍâ½ÓÔ²µÄÖ±¾¶£¬Í¨¹ý¹´¹É¶¨ÀíÇó³öBE£¬AE£¬ÓÉ´ËÇóµÃtan¡ÏBAE=$\frac{BE}{AE}$=$\frac{\sqrt{2}}{3\sqrt{2}}=\frac{1}{3}$£¬ÓÖtan¡ÏCBE=$\frac{1}{3}$£¬ËùÒÔ¡ÏBAE=¡ÏCBE£»ÇóµÃ¡ÏCBA=90¡ã£¬¼´CB¡ÍAB£¬ËùÒÔCBÊÇ¡÷ABEÍâ½ÓÔ²µÄÇÐÏߣ®     
£¨3£©ÉèÖ±ÏßABµÄ½âÎöʽΪy=kx+b£®½«A£¨3£¬0£©£¬B£¨1£¬4£©´úÈëy=kx+b£¬ÇóµÃy=-2x+6£»¹ýµãE×÷ÉäÏßEF¡ÎxÖá½»ABÓÚµãF£¬Çó³öµãF£¨$\frac{3}{2}$£¬3£©£¬·ÖÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ£º
Çé¿öÒ»£ºÈçͼ2£¬µ±0£¼t¡Ü$\frac{3}{2}$ʱ£¬Éè¡÷AOEÆ½ÒÆµ½¡÷PNMµÄλÖã¬MD½»ABÓÚµãH£¬MN½»AEÓÚµãG£®ÔòON=AP=t£¬¹ýµãH×÷LK¡ÍxÖáÓÚµãK£¬½»EFÓÚµãL£¬ÀûÓá÷AHP¡×¡÷FHM£¬¡÷FHL¡×¡÷AHK£¬ÇóµÃHK=2t£¬ËùÒÔ¡÷AOEÓë¡÷ABEÖØµþ²¿·ÖµÄÃæ»ýS=S¡÷MNP-S¡÷GNA-S¡÷HAP£¬
Çé¿ö¶þ£ºÈçͼ3£¬µ±$\frac{3}{2}$£¼t¡Ü3ʱ£¬Éè¡÷AOEÆ½ÒÆµ½¡÷PQRµÄλÖã¬PQ½»ABÓÚµãI£¬½»AEÓÚµãV£¬ÀûÓá÷IQA¡×¡÷IPF£¬½âµÃIQ=2£¨3-t£©ËùÒÔ£¬¡÷AOEÓë¡÷ABEÖØµþ²¿·ÖµÄÃæ»ýS=S¡÷IQA-S¡÷VQA£®

½â´ð ½â£º£¨1£©Ö¤Ã÷£ºÈçͼ1£¬

¡ßµãBµÄ×ø±êÊÇ£¨1£¬4£©£¬
¡àMB=1£¬OM=4£®
ÔÚRt¡÷AOEÖУ¬OA=OE=3£¬
¡à¡ÏOAE=¡ÏOEA=45¡ã£®
ÔÚRt¡÷EMBÖУ¬EM=OM-OE=1=BM£¬
¡à¡ÏMEB=¡ÏMBE=45¡ã£®         
¡à¡ÏOAE=¡ÏMBE=45¡ã£®
¡ÏOEA=¡ÏMEB=45¡ã£¬
¡à¡÷AEO¡«¡÷BEM£®
£¨2£©ÓÉ£¨1£©Öª£¬¡ÏOEA+¡ÏMEB=90¡ã
¡à¡ÏBEA=180¡ã-¡ÏOEA-¡ÏMEB=90¡ã£®
¡àABÊÇ¡÷ABEÍâ½ÓÔ²µÄÖ±¾¶£®                    
ÔÚRt¡÷AOEÖУ¬OA=OE=3£¬AE=$\sqrt{O{A}^{2}+O{E}^{2}}=3\sqrt{2}$£®
ÔÚRt¡÷EMBÖУ¬EM=BM=1£¬BE=$\sqrt{E{M}^{2}+B{M}^{2}}=\sqrt{2}$£®
ÔÚRt¡÷ABEÖУ¬tan¡ÏBAE=$\frac{BE}{AE}$=$\frac{\sqrt{2}}{3\sqrt{2}}=\frac{1}{3}$£¬
¡ßtan¡ÏCBE=$\frac{1}{3}$£¬
¡à¡ÏBAE=¡ÏCBE£®                                    
ÔÚRt¡÷ABEÖУ¬¡ÏBAE+¡ÏABE=90¡ã£¬
¡à¡ÏCBE+¡ÏABE=90¡ã£¬
¡à¡ÏCBA=90¡ã£¬
¼´CB¡ÍAB£¬
¡àCBÊÇ¡÷ABEÍâ½ÓÔ²µÄÇÐÏߣ®           
£¨3£©½â£ºÉèÖ±ÏßABµÄ½âÎöʽΪy=kx+b£®
½«A£¨3£¬0£©£¬B£¨1£¬4£©´úÈ룬µÃ£º$\left\{\begin{array}{l}{3k+b=0}\\{k+b=4}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=-2}\\{b=6}\end{array}\right.$£¬
¡ày=-2x+6£®
¹ýµãE×÷ÉäÏßEF¡ÎxÖá½»ABÓÚµãF£¬
µ±y=3ʱ£¬µÃx=$\frac{3}{2}$£¬
¡àF£¨$\frac{3}{2}$£¬3£©£®     
Çé¿öÒ»£ºÈçͼ2£¬µ±0£¼t¡Ü$\frac{3}{2}$ʱ£¬Éè¡÷AOEÆ½ÒÆµ½¡÷PNMµÄλÖã¬MD½»ABÓÚµãH£¬MN½»AEÓÚµãG£®

ÔòON=AD=t£¬¹ýµãH×÷LK¡ÍxÖáÓÚµãK£¬½»EFÓÚµãL£¬
¡ßEF¡ÎxÖᣬ
¡à¡÷AHP¡×¡÷FHM£¬¡÷FHL¡×¡÷AHK£¬
¡à$\frac{AP}{FM}=\frac{AH}{FH}£¬\frac{AH}{FH}=\frac{HK}{HL}$£¬
¡à$\frac{AP}{FM}=\frac{HK}{HL}$£¬¼´$\frac{t}{\frac{3}{2}-t}=\frac{HK}{3-HK}$£¬
½âµÃ£ºHK=2t£®
¡à¡÷AOEÓë¡÷ABEÖØµþ²¿·ÖµÄÃæ»ýS=S¡÷MNP-S¡÷GNA-S¡÷HAP=$\frac{1}{2}$¡Á3¡Á3-$\frac{1}{2}¡Á$£¨3-t£©2-$\frac{1}{2}$t•2t=-$\frac{3}{2}$t2+3t£®
Çé¿ö¶þ£ºÈçͼ3£¬µ±$\frac{3}{2}$£¼t¡Ü3ʱ£¬Éè¡÷AOEÆ½ÒÆµ½¡÷PQRµÄλÖã¬PQ½»ABÓÚµãI£¬½»AEÓÚµãV£¬

¡ßEF¡ÎxÖᣬ
¡à¡÷IQA¡×¡÷IPF£¬
¡à$\frac{AQ}{FP}=\frac{IQ}{IP}$£¬
¼´$\frac{3-t}{t-\frac{3}{2}}=\frac{IQ}{3-IQ}$£¬
½âµÃ£ºIQ=2£¨3-t£©£®
¡à¡÷AOEÓë¡÷ABEÖØµþ²¿·ÖµÄÃæ»ýS=S¡÷IQA-S¡÷VQA=$\frac{1}{2}$¡Á£¨3-t£©¡Á2£¨3-t£©-$\frac{1}{2}$£¨3-t£©2=$\frac{1}{2}$£¨3-t£©2=$\frac{1}{2}$t2-3t+$\frac{9}{2}$£®
×ÛÉÏËùÊö£ºs=$\left\{\begin{array}{l}{-\frac{3}{2}{t}^{2}+3t£¨0£¼t¡Ü\frac{3}{2}£©}\\{\frac{1}{2}{t}^{2}-3t+\frac{9}{2}£¨\frac{3}{2}£¼t¡Ü3£©}\end{array}\right.$£®

µãÆÀ ±¾Ì⿼²éÁËÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢Ô²µÄÇÐÏßµÄÅж¨¡¢º¯Êý¹ØÏµÊ½£¬½â¾ö±¾ÌâµÄ¹Ø¼üÊÇ×÷¸¨ÖúÏß¹¹½¨Èý½ÇÐÎÏàËÆ£¬ÒÔ¼°ÊýÐνáºÏ˼ÏëµÄÓ¦Óã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÏÂÁи÷ʽÖУ¬ÊôÓÚ×î¼ò¶þ´Î¸ùʽµÄÊÇ£¨¡¡¡¡£©
A£®$\sqrt{20}$B£®$\sqrt{19}$C£®$\sqrt{18}$D£®$\sqrt{\frac{1}{5}}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®¶ÁÓï¾ä£¬»­Í¼ÐΣº
£¨1£©ÔÚͼ£¨1£©ÖУ¬»­DE¡ÎBC½»ACÓÚµãE£¬»­DF¡ÎAC½»BCÓÚµãF£»
£¨2£©ÔÚͼ£¨2£©ÖУ¬»­AE¡ÎDC½»BCÓÚµãE£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®²Ù×÷£ºÐ¡Ã÷×¼±¸ÖÆ×÷ÀⳤΪ1cmµÄÕý·½ÌåÖ½ºÐ£¬ÏÖÑ¡ÓÃһЩ·ÏÆúµÄֽƬ½øÐÐÈçͼ1Éè¼Æ£º
·¢ÏÖ£º£¨1£©Ð¡Ã÷ÔÚ·½°¸Ò»ÖÐÁ¬½ÓAC£¬AB£¬BCºó·¢ÏÖ£¬ABÇ¡ºÃΪ¸ÃÔ²Ö±¾¶£¬ÄãÈÏΪСÃ÷µÄÕâ¸ö·¢ÏÖÊÇ·ñÕýÈ·£¿Çë˵Ã÷ÀíÓÉ£®
£¨2£©Ð¡Ã÷ͨ¹ý¼ÆË㣬·¢ÏÖ·½°¸Ò»ÖÐֽƬµÄÀûÓÃÂÊԼΪ38.2%£¬ÄãÖªµÀÔõôËãµÄÂð£¿ÇëÄãд³öËûµÄ¼ÆËã¹ý³Ì£»
̽¾¿£º£¨3£©¶ÔÓÚ·½°¸¶þֽƬµÄÀûÓÃÂÊ£¬Ð¡Ã÷ÈÏΪ¹Ø¼üµÄÊÇÒªÇó³ö´ËÖ±½ÇÈý½ÇÐεÄÁ½Ö±½Ç±ßµÄ³¤£¬ÄãÊÇÕâÑùÏëµÄÂð£¿ÇëÄãÇó³ö·½°¸¶þֽƬµÄÀûÓÃÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖª£ºÈçͼ£¨1£©£¬ÔÚÖ±½Ç×ø±êϵÖÐxOyÖУ¬±ß³¤Îª2µÄµÈ±ß¡÷OABµÄ¶¥µãBÔÚµÚÒ»ÏóÏÞ£¬¶¥µãAÔÚxÖáµÄÕý°ëÖáÉÏ£¬ÁíÒ»µÈÑü¡÷OCAµÄ¶¥µãCÔÚµÚËÄÏóÏÞ£¬OC=AC£¬¡ÏC=120¡ã£®
£¨1£©Ôڵȱߡ÷OABµÄ±ßÉÏ£¨µãA³ýÍ⣩´æÔÚµãD£¬Ê¹µÃ¡÷OCDΪµÈÑüÈý½ÇÐΣ®Ôò·ûºÏÌõ¼þµÄµãDµÄ×ø±êÊÇ£¨$\frac{\sqrt{3}}{3}$£¬1£©»ò£¨$\frac{2\sqrt{3}}{3}$£¬0£©»ò£¨$\frac{2}{3}$£¬0£©»ò£¨$\frac{4}{3}$£¬$\frac{2\sqrt{3}}{3}$£©£®
£¨2£©Èçͼ£¨2£©£¬ÏÖÓСÏMCN=60¡ã£¬ÆäÁ½±ß·Ö±ðΪOB¡¢AB½»ÓÚµãM¡¢N£¬Á¬½ÓMN£¬½«¡ÏMCNÈÆ×ŵãCÐýת£¨0¡ã£¼Ðýת½Ç£¼60¡ã£©£¬Ê¹µÃM¡¢NʼÖÕÔÚ±ßOBºÍ±ßABÉÏ£¬ÊÇÅжÏÔÚÕâÒ»¹ý³ÌÖУ¬¡÷BMNµÄÖܳ¤ÊÇ·ñ·¢Éú±ä»¯£¿Èôû±ä»¯£¬ÇëÇó³öÆäÖܳ¤£»Èç·¢Éú±ä»¯£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÔÚ£¨2£©ÖÐÉèMN=x£¬¡÷MCNµÄÃæ»ýΪS£¬Çó³öS¹ØÓÚxµÄº¯Êý¹ØÏµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖª£¬Èçͼ£¨1£©£¬ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬AB=12£¬BC=6£¬AD¡ÍBD£¬ÒÔDΪб±ßÔÚÆ½ÐÐËıßÐÎABCDµÄÄÚ²¿×÷Rt¡÷AED£¬¡ÏEAD=30¡ã£¬¡ÏAED=90¡ã£®
£¨1£©Çó¡÷AEDµÄÖܳ¤£®
£¨2£©ÈôRt¡÷AEDÒÔÿÃë2¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÑØÉäÏßDC·½ÏòÒÆ¶¯£¬µ±Rt¡÷AEDÓë¡÷BDCûÓÐÖØµþ²¿·ÖʱֹͣÔ˶¯£®ÉèÔ˶¯µÄʱ¼äΪtÃ룬Rt¡÷AEDÓë¡÷BDCÖØµþ²¿·ÖµÄÃæ»ýΪS£¬ÇëÖ±½Óд³öSÓëtµÄº¯Êý¹ØÏµÊ½£¬²¢Ð´³ö×Ô±äÁ¿µÄȡֵ·¶Î§£»
£¨3£©Èçͼ£¨2£©£¬ÔÚ£¨2£©ÖУ¬µ±Rt¡÷AEDÍ£Ö¹ÒÆ¶¯ºó£¬½«ËüÈÆµãC˳ʱÕëÐýת¦Á£¨0¡ã£¼¦Á£¼180¡ã£©£¬ÔÚÐýת¹ý³ÌÖУ¬BµÄ¶ÔÓ¦µãΪB¡ä£¬µãEµÄ¶ÔÓ¦µãΪE¡ä£¬ÉèÖ±ÏßB¡äE¡äÓëÖ±ÏßBE½»ÓÚµãP£¬ÓëÖ±ÏßCB½»ÓÚµãQ£¬ÊÇ·ñ´æÔÚÕâÑùµÄ¦Á£¬Ê¹¡÷BPQΪµÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³ö¦ÁµÄ¶ÈÊý£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Õý·½ÐÎABCDµÄ¶¥µãAÂäÔÚyÖáÉÏ£¬µãCÂäÔÚxÖáÉÏ£¬Ëæ×Ŷ¥µãCÓÉÔ­µãOÏòxÖáÕý°ëÖá·½ÏòÔ˶¯£¬¶¥µãAÑØyÖḺ°ëÖá·½ÏòÔ˶¯µ½ÖÕµãO£¬ÔÚÔ˶¯¹ý³ÌÖÐODµÄ³¤¶È±ä»¯Çé¿öÊÇ£¨¡¡¡¡£©
A£®Ò»Ö±Ôö´óB£®Ò»Ö±¼õСC£®ÏȼõСºóÔö´óD£®ÏÈÔö´óºó¼õÉÙ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖª£¬Èôº¯Êýy=£¨m-1£©${x}^{{m}^{2}}$+3ÊǹØÓÚxµÄÒ»´Îº¯Êý
£¨1£©ÇómµÄÖµ£¬²¢Ð´³ö½âÎöʽ£®
£¨2£©Åжϵ㣨1£¬2£©ÊÇ·ñÔڴ˺¯ÊýͼÏóÉÏ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Ò»´Îº¯Êýy=2x+4µÄͼÏóÓëyÖá½»µãµÄ×ø±êÊÇ£¨0£¬4£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸