精英家教网 > 初中数学 > 题目详情
如图所示,将长方形ABCD沿直线BD折叠,使C点落在C′处,BC′交AD于E.
(1)求证:BE=DE;
(2)若AD=8,AB=4,求△BED的面积.
(1)见解析   (2)10

试题分析:(1)先根据折叠的性质得出∠1=∠2,再由矩形的对边平行,内错角相等,所以∠1=∠3,然后根据角之间的等量代换可知DE=BE;
(2)设DE=x,则AE=8﹣x,BE=x,在△ABE中,运用勾股定理得到BE2=AB2+AE2,列出关于x的方程,解方程求出x的值,再根据三角形的面积公式,即可求得△BED的面积.
(1)证明:∵△BDC′是由△BDC沿直线BD折叠得到的,
∴∠1=∠2,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠1=∠3,
∴∠2=∠3,
∴BE=DE;(2)解:设DE=x,则AE=AD﹣DE=8﹣x,
在△ABE中,∵∠A=90°,BE=DE=x,
∴BE2=AB2+AE2
∴x2=42+(8﹣x)2
∴x=5,
∴△BED的面积=DE×AB=×5×4=10.

点评:此题通过折叠变换考查了三角形的有关知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后对应边、对应角相等.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.
求证:OE=BC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,?ABCD的两条对角线AC和BD相交于点O,并且BD=4,AC=6,BC=
(1)AC与BD有什么位置关系?为什么?
(2)四边形ABCD是菱形吗?为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列命题中,正确的是【   】
A.平行四边形的对角线相等B.矩形的对角线互相垂直
C.菱形的对角线互相垂直且平分D.梯形的对角线相等

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,E,F为BC上两点,且BE=CF,连接AF,DE交于点O.求证:

(1)△ABF≌△DCE;
(2)△AOD是等腰三角形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是
A.梯形B.矩形C.菱形D.正方形

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,则∠AEF=     度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图是某地下商业街的入口,数学课外兴趣小组同学打算运用所学知识测量侧面支架最高点E到地面距离EF.经测量,支架立柱BC与地面垂直,即∠BCA=90°,且BC=1.5cm,点F、A、C在同一条水平线上,斜杆AB与水平线AC夹角∠BAC=30°,支撑杆DE⊥AB于点D,该支架边BE与AB夹角∠EBD=60°,又测得AD=1m。请你求出该支架边BE及顶端E到地面距离EF长度。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,平行四边形ABCD的周长是18cm,对角线AC、BD相交于点O,若△AOD与△AOB的周长差是5cm,则边AB的长是 _________ cm.

查看答案和解析>>

同步练习册答案