17£®Èçͼ£¬Å×ÎïÏßL£ºy=ax2£¨a£¾0£©ÓëÖ±Ïßy=kxÏཻÓÚµãA£¨µãAÔÚµÚÒ»ÏóÏÞ£©£¬Å×ÎïÏßLÑØÖ±Ïßy=kxÆ½ÒÆµÃµ½Å×ÎïÏßL1£¬µ±Å×ÎïÏßL1¹ýµãAʱ£¬½»Ö±Ïßy=kxÓÚµãB£®¹ýµãB×÷BC¡ÎxÖá½»Å×ÎïÏßLÓÚC¡¢EÁ½µã£¨µãCÔÚµÚ¶þÏóÏÞ£©£®½»Å×ÎïÏßL1ÓÚÁíÒ»µãD£®
£¨1£©Èçͼ1£¬Èôa=1£¬k=1£¬¢ÙÇóOBµÄ³¤£»¢ÚÇóÖ¤£ºµãDÔÚyÖáÉÏ£»
£¨2£©Èçͼ2£¬Èôk=$\frac{1}{2}$ʱ£¬²»ÂÛaÈ¡ºÎÖµ£¬$\frac{BE}{DC}$µÄ±ÈÖµÊÇ·ñΨһȷ¶¨£¿ÈôÊÇ£¬ÇëÇó³ö±ÈÖµ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©²»ÂÛa£¬kÈ¡ºÎÖµ£¬$\frac{BE}{DC}$µÄ±ÈÖµÊÇ·ñΨһȷ¶¨£¿ÈôÊÇ£¬ÇëÇó³ö±ÈÖµ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÏȽ«a=1£¬k=1´úÈëÅ×ÎïÏßLµÄ½âÎöʽºÍÖ±ÏßAB½âÎöʽÖУ¬½ø¶øÈ·¶¨³öµãAµÄ×ø±ê£¬ÔÙÀûÓÃÆ½ÒÆÈ·¶¨³öÅ×ÎïÏßL1µÄ½âÎöʽ£¬Å×ÎïÏßL1ºÍÖ±ÏßAB½âÎöʽÁªÁ¢È·¶¨³öµãBµÄ×ø±ê£¬ÔÙÀûÓÃBC¡ÎxÖᣬ°ÑµãBµÄ×Ý×ø±ê´úÈëÅ×ÎïÏßL1ÖУ¬È·¶¨³öµãDµÄ×ø±ê£»
£¨2£©ÏȽ«k=$\frac{1}{2}$È·¶¨³öÖ±ÏßABµÄ½âÎöʽ£¬ºÍÅ×ÎïÏßLµÄ½âÎöʽÁªÁ¢È·¶¨³öµãAµÄ×ø±ê£¬ÔÙÀûÓÃÆ½ÒÆÈ·¶¨³öÅ×ÎïÏßL1µÄ½âÎöʽ£¬Å×ÎïÏßL1ºÍÖ±ÏßAB½âÎöʽÁªÁ¢È·¶¨³öµãBµÄ×ø±ê£¬ÔÙÀûÓÃBC¡ÎxÖᣬ°ÑµãBµÄ×Ý×ø±ê´úÈëÅ×ÎïÏßL£¬L1ÖУ¬È·¶¨³öµãC¡¢EºÍDµÄ×ø±ê£»
£¨3£©Ö±½ÓÁªÁ¢Å×ÎïÏßLµÄ½âÎöʽºÍÖ±ÏßABµÄ½âÎöʽȷ¶¨³öµãAµÄ×ø±ê£¬ÆäÓàͬ£¨2£©µÄ·½·¨£®

½â´ð ½â£º£¨1£©µ±a=1£¬k=1ʱ£¬Å×ÎïÏßLµÄ½âÎöʽΪ£ºy=x2¢ÙÓëÖ±ÏßABµÄ½âÎöʽΪy=x¢Ú£¬
ÁªÁ¢¢Ù¢ÚµÃ£¬$\left\{\begin{array}{l}{y={x}^{2}}\\{y=x}\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$£¨ÊÇÔ­µã£©»ò$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$£¬
¡àA£¨1£¬1£©£¬
¡ßÅ×ÎïÏßLÑØÖ±Ïßy=xÆ½ÒÆµÃµ½Å×ÎïÏßL1£¬µ±Å×ÎïÏßL1¹ýµãA£¨1£¬1£©£¬
¡àÅ×ÎïÏßL1½âÎöʽΪy=£¨x-1£©2+1¢Û£¬
ÁªÁ¢¢Ú¢ÛµÃ£¬$\left\{\begin{array}{l}{y=x}\\{y=£¨x-1£©^{2}+1}\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$£¨µãAµÄ×ø±ê£©»ò$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$£¬
¡àB£¨2£¬2£©£¬
¢Ù¡àOB=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$£»
¢Ú°Ñy=2´úÈëÅ×ÎïÏßL1½âÎöʽy=£¨x-1£©2+1ÖУ¬µÃ£¬£¨x-1£©2+1=2£¬
¡àx=0»òx=2£¨µãBµÄºá×ø±ê£©£¬
¡àD£¨0£¬2£©£¬
¡àµãDÔÚyÖáÉÏ£»

£¨2£©µ±k=$\frac{1}{2}$ʱ£¬²»ÂÛaÈ¡ºÎÖµ£¬$\frac{BE}{DC}$µÄ±ÈÖµÊÇΨһȷ¶¨£¬´ËֵΪ£¨$\sqrt{2}$-1£©£®
ÀíÓÉ£ºµ±k=$\frac{1}{2}$ʱ£¬Ö±ÏßABµÄ½âÎöʽΪy=$\frac{1}{2}$x¢Ü£¬
¡ßÅ×ÎïÏßLµÄ½âÎöʽΪ£ºy=ax2£¨a£¾0£©¢Ý£¬
ÁªÁ¢¢Ü¢ÝµÃ£¬$\left\{\begin{array}{l}{y=\frac{1}{2}x}\\{y=a{x}^{2}}\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$£¨Ô­µã£©»ò$\left\{\begin{array}{l}{x=\frac{1}{2a}}\\{y=\frac{1}{4a}}\end{array}\right.$£¬
¡àA£¨$\frac{1}{2a}$£¬$\frac{1}{4a}$£©£¬
¡àÅ×ÎïÏßL1½âÎöʽy=a£¨x-$\frac{1}{2a}$£©2+$\frac{1}{4a}$¢Þ£¬
ÁªÁ¢¢Ü¢ÞµÃ£¬$\left\{\begin{array}{l}{y=\frac{1}{2}x}\\{y=a{x}^{2}}\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}{x=\frac{1}{2a}}\\{y=\frac{1}{4a}}\end{array}\right.$£¨µãAµÄ×ø±ê£©»ò$\left\{\begin{array}{l}{x=\frac{1}{a}}\\{y=\frac{1}{2a}}\end{array}\right.$
¡àB£¨$\frac{1}{a}$£¬$\frac{1}{2a}$£©£¬
¡ßBC¡ÎxÖᣬ
¡à°Ñy=$\frac{1}{2a}$´úÈëÅ×ÎïÏßL1½âÎöʽy=a£¨x-$\frac{1}{2a}$£©2+$\frac{1}{4a}$ÖУ¬µÃx=0»òx=$\frac{1}{a}$£¨µãBµÄºá×ø±ê£©£¬
¡àD£¨0£¬$\frac{1}{2a}$£©£¬
°Ñy=$\frac{1}{2a}$´úÈëÅ×ÎïÏßL½âÎöʽy=ax2ÖУ¬µÃx=¡À$\frac{\sqrt{2}}{2a}$£¬
¡àC£¨-$\frac{\sqrt{2}}{2a}$£¬$\frac{1}{2a}$£©£¬E£¨$\frac{\sqrt{2}}{2a}$£¬$\frac{1}{2a}$£©£¬
¡àBE=$\frac{1}{a}$-$\frac{\sqrt{2}}{2a}$=$\frac{2-\sqrt{2}}{2a}$£¬DC=0-£¨-$\frac{\sqrt{2}}{2a}$£©=$\frac{\sqrt{2}}{2a}$£¬
¡à$\frac{BE}{DC}=\frac{\frac{2-\sqrt{2}}{2a}}{\frac{\sqrt{2}}{2a}}$=$\frac{2-\sqrt{2}}{\sqrt{2}}$=$\sqrt{2}$-1£®
¡àµ±k=$\frac{1}{2}$ʱ£¬²»ÂÛaÈ¡ºÎÖµ£¬$\frac{BE}{DC}$µÄ±ÈÖµÊÇΨһȷ¶¨£¬´ËֵΪ£¨$\sqrt{2}$-1£©£®

£¨3£©²»ÂÛa£¬kÈ¡ºÎÖµ£¬$\frac{BE}{DC}$µÄ±ÈÖµÊÇΨһȷ¶¨£¬´ËֵΪ£¨$\sqrt{2}$-1£©£®
ÀíÓÉ£º¡ßÅ×ÎïÏßL£ºy=ax2¢ß£¨a£¾0£©ÓëÖ±Ïßy=kx¢àÏཻÓÚµãA£¨µãAÔÚµÚÒ»ÏóÏÞ£©£¬
¡àÁªÁ¢¢ß¢àµÃ£¬$\left\{\begin{array}{l}{y=kx}\\{y=a{x}^{2}}\end{array}\right.$£¬¡à$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$£¨Ô­µã×ø±ê£©»ò$\left\{\begin{array}{l}{x=\frac{k}{a}}\\{y=\frac{{k}^{2}}{a}}\end{array}\right.$£¬
¡àA£¨$\frac{k}{a}$£¬$\frac{{k}^{2}}{a}$£©£¬
¡ßÅ×ÎïÏßLÑØÖ±Ïßy=kxÆ½ÒÆµÃµ½Å×ÎïÏßL1£¬µ±Å×ÎïÏßL1¹ýµãA£¬
¡àÅ×ÎïÏßL1µÄ½âÎöʽΪy=a£¨x-$\frac{k}{a}$£©2+$\frac{{k}^{2}}{a}$=ax2-2kx+$\frac{2{k}^{2}}{a}$¢á£¬
ÁªÁ¢¢à¢áµÃ£¬$\left\{\begin{array}{l}{y=kx}\\{y=a{x}^{2}-2kx+\frac{2{k}^{2}}{a}}\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}{x=\frac{k}{a}}\\{y=\frac{{k}^{2}}{a}}\end{array}\right.$£¨µãAµÄ×ø±ê£©»ò$\left\{\begin{array}{l}{x=\frac{2k}{a}}\\{y=\frac{2{k}^{2}}{a}}\end{array}\right.$£¬
¡àB£¨$\frac{2k}{a}$£¬$\frac{2{k}^{2}}{a}$£©£¬
¡àBC¡ÎxÖᣬ°Ñy=$\frac{2{k}^{2}}{a}$´úÈëÅ×ÎïÏßL1½âÎöʽy=ax2-2kx+$\frac{2{k}^{2}}{a}$ÖУ¬µÃx=0»òx=$\frac{2k}{a}$£¨µãBµÄºá×ø±ê£©£¬
¡àD£¨0£¬$\frac{2{k}^{2}}{a}$£©£¬
°Ñy=$\frac{2{k}^{2}}{a}$´úÈëÅ×ÎïÏßL½âÎöʽy=ax2ÖУ¬µÃx=¡À$\frac{\sqrt{2}k}{a}$£¬
¡àC£¨-$\frac{\sqrt{2}k}{a}$£¬$\frac{2{k}^{2}}{a}$£©£¬E£¨$\frac{\sqrt{2}k}{a}$£¬$\frac{2{k}^{2}}{a}$£©£¬
¡àBE=$\frac{2k}{a}$-$\frac{\sqrt{2}k}{a}$=$\frac{£¨2-\sqrt{2}£©k}{a}$£¬DC=0-£¨-$\frac{\sqrt{2}k}{a}$£©=$\frac{\sqrt{2}k}{a}$£¬
¡à$\frac{BE}{DC}=\frac{\frac{£¨2-\sqrt{2}£©k}{a}}{\frac{\sqrt{2}k}{a}}$=$\frac{2-\sqrt{2}}{\sqrt{2}}$=$\sqrt{2}$-1£®
¡à²»ÂÛa£¬kÈ¡ºÎÖµ£¬$\frac{BE}{DC}$µÄ±ÈÖµÊÇΨһȷ¶¨£¬´ËֵΪ£¨$\sqrt{2}$-1£©£®

µãÆÀ ´ËÌâÊǶþ´Îº¯Êý×ÛºÏÌ⣬Ö÷Òª¿¼²éÁË´ý¶¨ÏµÊý·¨£¬Ö±ÏߺÍÅ×ÎïÏߵĽ»µã×ø±êµÄÈ·¶¨µÈ֪ʶµã£¬»á½âº¬×ÖĸϵÊýµÄ·½³Ì×éÊǽⱾÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2016-2017ѧÄê±±¾©ÊÐÎ÷³ÇÇøÆßÄê¼¶ÉÏѧÆÚÆÚÄ©¿¼ÊÔÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºµ¥Ñ¡Ìâ

ÏÂÁз½³ÌÖУ¬½âΪx=4µÄ·½³ÌÊÇ£¨ £©.

A. x-1=4 B. 4x=1 C. 4x-1=3x+3 D. 2£¨x-1£©=1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬º¯Êýy=-$\frac{4}{3}$x+8µÄͼÏó·Ö±ðÓëxÖá¡¢yÖá½»ÓÚA¡¢BÁ½µã£¬µãCÔÚyÖáÉÏ£¬ACƽ·Ö¡ÏOAB£®
£¨1£©ÇóµãA¡¢BµÄ×ø±ê£»
£¨2£©Çó¡÷ABCµÄÃæ»ý£»
£¨3£©µãPÔÚ×ø±êÆ½ÃæÄÚ£¬ÇÒÒÔA¡¢B¡¢PΪ¶¥µãµÄÈý½ÇÐÎÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬ÇëÄãÖ±½Óд³öµãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®¼ÆË㣺3+£¨-2£©½á¹ûÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®1B£®-1C£®5D£®-5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒªÊ¹·Öʽ$\frac{1}{{{x^2}-1}}$ÓÐÒâÒ壬ÔòxÓ¦Âú×ãµÄÌõ¼þÊÇ£¨¡¡¡¡£©
A£®x¡Ù1B£®x¡Ù-1C£®x¡Ù0D£®x¡Ù¡À1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Ê½×Óy=$\frac{\sqrt{x}}{x-1}$ÖÐxµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®x¡Ý0B£®x¡Ý0ÇÒx¡Ù1C£®0¡Üx£¼1D£®x£¾1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®¸ù¾Ý°¢Àï°Í°Í¹«²¼µÄʵʱÊý¾Ý£¬½ØÖÁ2016Äê11ÔÂ11ÈÕ24ʱ£¬Ììè˫11È«Çò¿ñ»¶½Ú×ܽ»Ò×¶îÔ¼1207ÒÚ£¬°ÑÕâ¸öÊý¾ÝÓÿÆÑ§¼ÇÊý·¨±íʾΪ£¨¡¡¡¡£©
A£®1207¡Á108ÔªB£®12.07¡Á1010ÔªC£®1.207¡Á108ÔªD£®1.207¡Á1011Ôª

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ÕýʵÊýºÍ¸ºÊµÊýͳ³ÆÎªÊµÊýB£®Ò»¸öÊý²»ÊÇÕýÊý¾ÍÊǸºÊý
C£®ÕûÊýÊÇ×ÔÈ»ÊýD£®×ÔÈ»Êý¾ÍÊǷǸºÕûÊý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®2016Äê10ÔÂ17ÈÕ£¬ÉñÖÝʮһºÅÔØÈË·É´¬ÉÏÌ죬µ½´ï¾àÀëµØÃæ393¹«Àï¹ìµÀµÄи߶ȣ¬ÎÒ¹ú¿ªÊ¼ÊµÊ©º½ÌìÔ±ÖÐÆÚפÁôÊÔÑ飬ĿǰÔÚ¹ì·ÉÐÐËÙ¶ÈԼΪ7820Ã×/Ã룬ÆäÖÐÊý¾Ý7820ÓÿÆÑ§¼ÇÊý·¨±íʾΪ£¨¡¡¡¡£©
A£®7.8¡Á103B£®78.2¡Á102C£®7.82¡Á103D£®7.82¡Á104

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸