·ÖÎö £¨1£©ÏȽ«a=1£¬k=1´úÈëÅ×ÎïÏßLµÄ½âÎöʽºÍÖ±ÏßAB½âÎöʽÖУ¬½ø¶øÈ·¶¨³öµãAµÄ×ø±ê£¬ÔÙÀûÓÃÆ½ÒÆÈ·¶¨³öÅ×ÎïÏßL1µÄ½âÎöʽ£¬Å×ÎïÏßL1ºÍÖ±ÏßAB½âÎöʽÁªÁ¢È·¶¨³öµãBµÄ×ø±ê£¬ÔÙÀûÓÃBC¡ÎxÖᣬ°ÑµãBµÄ×Ý×ø±ê´úÈëÅ×ÎïÏßL1ÖУ¬È·¶¨³öµãDµÄ×ø±ê£»
£¨2£©ÏȽ«k=$\frac{1}{2}$È·¶¨³öÖ±ÏßABµÄ½âÎöʽ£¬ºÍÅ×ÎïÏßLµÄ½âÎöʽÁªÁ¢È·¶¨³öµãAµÄ×ø±ê£¬ÔÙÀûÓÃÆ½ÒÆÈ·¶¨³öÅ×ÎïÏßL1µÄ½âÎöʽ£¬Å×ÎïÏßL1ºÍÖ±ÏßAB½âÎöʽÁªÁ¢È·¶¨³öµãBµÄ×ø±ê£¬ÔÙÀûÓÃBC¡ÎxÖᣬ°ÑµãBµÄ×Ý×ø±ê´úÈëÅ×ÎïÏßL£¬L1ÖУ¬È·¶¨³öµãC¡¢EºÍDµÄ×ø±ê£»
£¨3£©Ö±½ÓÁªÁ¢Å×ÎïÏßLµÄ½âÎöʽºÍÖ±ÏßABµÄ½âÎöʽȷ¶¨³öµãAµÄ×ø±ê£¬ÆäÓàͬ£¨2£©µÄ·½·¨£®
½â´ð ½â£º£¨1£©µ±a=1£¬k=1ʱ£¬Å×ÎïÏßLµÄ½âÎöʽΪ£ºy=x2¢ÙÓëÖ±ÏßABµÄ½âÎöʽΪy=x¢Ú£¬
ÁªÁ¢¢Ù¢ÚµÃ£¬$\left\{\begin{array}{l}{y={x}^{2}}\\{y=x}\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$£¨ÊÇԵ㣩»ò$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$£¬
¡àA£¨1£¬1£©£¬
¡ßÅ×ÎïÏßLÑØÖ±Ïßy=xÆ½ÒÆµÃµ½Å×ÎïÏßL1£¬µ±Å×ÎïÏßL1¹ýµãA£¨1£¬1£©£¬
¡àÅ×ÎïÏßL1½âÎöʽΪy=£¨x-1£©2+1¢Û£¬
ÁªÁ¢¢Ú¢ÛµÃ£¬$\left\{\begin{array}{l}{y=x}\\{y=£¨x-1£©^{2}+1}\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$£¨µãAµÄ×ø±ê£©»ò$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$£¬
¡àB£¨2£¬2£©£¬
¢Ù¡àOB=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$£»
¢Ú°Ñy=2´úÈëÅ×ÎïÏßL1½âÎöʽy=£¨x-1£©2+1ÖУ¬µÃ£¬£¨x-1£©2+1=2£¬
¡àx=0»òx=2£¨µãBµÄºá×ø±ê£©£¬
¡àD£¨0£¬2£©£¬
¡àµãDÔÚyÖáÉÏ£»
£¨2£©µ±k=$\frac{1}{2}$ʱ£¬²»ÂÛaÈ¡ºÎÖµ£¬$\frac{BE}{DC}$µÄ±ÈÖµÊÇΨһȷ¶¨£¬´ËֵΪ£¨$\sqrt{2}$-1£©£®
ÀíÓÉ£ºµ±k=$\frac{1}{2}$ʱ£¬Ö±ÏßABµÄ½âÎöʽΪy=$\frac{1}{2}$x¢Ü£¬
¡ßÅ×ÎïÏßLµÄ½âÎöʽΪ£ºy=ax2£¨a£¾0£©¢Ý£¬
ÁªÁ¢¢Ü¢ÝµÃ£¬$\left\{\begin{array}{l}{y=\frac{1}{2}x}\\{y=a{x}^{2}}\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$£¨Ôµã£©»ò$\left\{\begin{array}{l}{x=\frac{1}{2a}}\\{y=\frac{1}{4a}}\end{array}\right.$£¬
¡àA£¨$\frac{1}{2a}$£¬$\frac{1}{4a}$£©£¬
¡àÅ×ÎïÏßL1½âÎöʽy=a£¨x-$\frac{1}{2a}$£©2+$\frac{1}{4a}$¢Þ£¬
ÁªÁ¢¢Ü¢ÞµÃ£¬$\left\{\begin{array}{l}{y=\frac{1}{2}x}\\{y=a{x}^{2}}\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}{x=\frac{1}{2a}}\\{y=\frac{1}{4a}}\end{array}\right.$£¨µãAµÄ×ø±ê£©»ò$\left\{\begin{array}{l}{x=\frac{1}{a}}\\{y=\frac{1}{2a}}\end{array}\right.$
¡àB£¨$\frac{1}{a}$£¬$\frac{1}{2a}$£©£¬
¡ßBC¡ÎxÖᣬ
¡à°Ñy=$\frac{1}{2a}$´úÈëÅ×ÎïÏßL1½âÎöʽy=a£¨x-$\frac{1}{2a}$£©2+$\frac{1}{4a}$ÖУ¬µÃx=0»òx=$\frac{1}{a}$£¨µãBµÄºá×ø±ê£©£¬
¡àD£¨0£¬$\frac{1}{2a}$£©£¬
°Ñy=$\frac{1}{2a}$´úÈëÅ×ÎïÏßL½âÎöʽy=ax2ÖУ¬µÃx=¡À$\frac{\sqrt{2}}{2a}$£¬
¡àC£¨-$\frac{\sqrt{2}}{2a}$£¬$\frac{1}{2a}$£©£¬E£¨$\frac{\sqrt{2}}{2a}$£¬$\frac{1}{2a}$£©£¬
¡àBE=$\frac{1}{a}$-$\frac{\sqrt{2}}{2a}$=$\frac{2-\sqrt{2}}{2a}$£¬DC=0-£¨-$\frac{\sqrt{2}}{2a}$£©=$\frac{\sqrt{2}}{2a}$£¬
¡à$\frac{BE}{DC}=\frac{\frac{2-\sqrt{2}}{2a}}{\frac{\sqrt{2}}{2a}}$=$\frac{2-\sqrt{2}}{\sqrt{2}}$=$\sqrt{2}$-1£®
¡àµ±k=$\frac{1}{2}$ʱ£¬²»ÂÛaÈ¡ºÎÖµ£¬$\frac{BE}{DC}$µÄ±ÈÖµÊÇΨһȷ¶¨£¬´ËֵΪ£¨$\sqrt{2}$-1£©£®
£¨3£©²»ÂÛa£¬kÈ¡ºÎÖµ£¬$\frac{BE}{DC}$µÄ±ÈÖµÊÇΨһȷ¶¨£¬´ËֵΪ£¨$\sqrt{2}$-1£©£®
ÀíÓÉ£º¡ßÅ×ÎïÏßL£ºy=ax2¢ß£¨a£¾0£©ÓëÖ±Ïßy=kx¢àÏཻÓÚµãA£¨µãAÔÚµÚÒ»ÏóÏÞ£©£¬
¡àÁªÁ¢¢ß¢àµÃ£¬$\left\{\begin{array}{l}{y=kx}\\{y=a{x}^{2}}\end{array}\right.$£¬¡à$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$£¨Ôµã×ø±ê£©»ò$\left\{\begin{array}{l}{x=\frac{k}{a}}\\{y=\frac{{k}^{2}}{a}}\end{array}\right.$£¬
¡àA£¨$\frac{k}{a}$£¬$\frac{{k}^{2}}{a}$£©£¬
¡ßÅ×ÎïÏßLÑØÖ±Ïßy=kxÆ½ÒÆµÃµ½Å×ÎïÏßL1£¬µ±Å×ÎïÏßL1¹ýµãA£¬
¡àÅ×ÎïÏßL1µÄ½âÎöʽΪy=a£¨x-$\frac{k}{a}$£©2+$\frac{{k}^{2}}{a}$=ax2-2kx+$\frac{2{k}^{2}}{a}$¢á£¬
ÁªÁ¢¢à¢áµÃ£¬$\left\{\begin{array}{l}{y=kx}\\{y=a{x}^{2}-2kx+\frac{2{k}^{2}}{a}}\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}{x=\frac{k}{a}}\\{y=\frac{{k}^{2}}{a}}\end{array}\right.$£¨µãAµÄ×ø±ê£©»ò$\left\{\begin{array}{l}{x=\frac{2k}{a}}\\{y=\frac{2{k}^{2}}{a}}\end{array}\right.$£¬
¡àB£¨$\frac{2k}{a}$£¬$\frac{2{k}^{2}}{a}$£©£¬
¡àBC¡ÎxÖᣬ°Ñy=$\frac{2{k}^{2}}{a}$´úÈëÅ×ÎïÏßL1½âÎöʽy=ax2-2kx+$\frac{2{k}^{2}}{a}$ÖУ¬µÃx=0»òx=$\frac{2k}{a}$£¨µãBµÄºá×ø±ê£©£¬
¡àD£¨0£¬$\frac{2{k}^{2}}{a}$£©£¬
°Ñy=$\frac{2{k}^{2}}{a}$´úÈëÅ×ÎïÏßL½âÎöʽy=ax2ÖУ¬µÃx=¡À$\frac{\sqrt{2}k}{a}$£¬
¡àC£¨-$\frac{\sqrt{2}k}{a}$£¬$\frac{2{k}^{2}}{a}$£©£¬E£¨$\frac{\sqrt{2}k}{a}$£¬$\frac{2{k}^{2}}{a}$£©£¬
¡àBE=$\frac{2k}{a}$-$\frac{\sqrt{2}k}{a}$=$\frac{£¨2-\sqrt{2}£©k}{a}$£¬DC=0-£¨-$\frac{\sqrt{2}k}{a}$£©=$\frac{\sqrt{2}k}{a}$£¬
¡à$\frac{BE}{DC}=\frac{\frac{£¨2-\sqrt{2}£©k}{a}}{\frac{\sqrt{2}k}{a}}$=$\frac{2-\sqrt{2}}{\sqrt{2}}$=$\sqrt{2}$-1£®
¡à²»ÂÛa£¬kÈ¡ºÎÖµ£¬$\frac{BE}{DC}$µÄ±ÈÖµÊÇΨһȷ¶¨£¬´ËֵΪ£¨$\sqrt{2}$-1£©£®
µãÆÀ ´ËÌâÊǶþ´Îº¯Êý×ÛºÏÌ⣬Ö÷Òª¿¼²éÁË´ý¶¨ÏµÊý·¨£¬Ö±ÏߺÍÅ×ÎïÏߵĽ»µã×ø±êµÄÈ·¶¨µÈ֪ʶµã£¬»á½âº¬×ÖĸϵÊýµÄ·½³Ì×éÊǽⱾÌâµÄ¹Ø¼ü£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2016-2017ѧÄê±±¾©ÊÐÎ÷³ÇÇøÆßÄê¼¶ÉÏѧÆÚÆÚÄ©¿¼ÊÔÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºµ¥Ñ¡Ìâ
ÏÂÁз½³ÌÖУ¬½âΪx=4µÄ·½³ÌÊÇ£¨ £©.
A. x-1=4 B. 4x=1 C. 4x-1=3x+3 D. 2£¨x-1£©=1
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | -1 | C£® | 5 | D£® | -5 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | x¡Ù1 | B£® | x¡Ù-1 | C£® | x¡Ù0 | D£® | x¡Ù¡À1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | x¡Ý0 | B£® | x¡Ý0ÇÒx¡Ù1 | C£® | 0¡Üx£¼1 | D£® | x£¾1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1207¡Á108Ôª | B£® | 12.07¡Á1010Ôª | C£® | 1.207¡Á108Ôª | D£® | 1.207¡Á1011Ôª |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ÕýʵÊýºÍ¸ºÊµÊýͳ³ÆÎªÊµÊý | B£® | Ò»¸öÊý²»ÊÇÕýÊý¾ÍÊǸºÊý | ||
| C£® | ÕûÊýÊÇ×ÔÈ»Êý | D£® | ×ÔÈ»Êý¾ÍÊǷǸºÕûÊý |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 7.8¡Á103 | B£® | 78.2¡Á102 | C£® | 7.82¡Á103 | D£® | 7.82¡Á104 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com