精英家教网 > 初中数学 > 题目详情

如图,已知正比例函数y=ax与反比例函数y=数学公式的图象交于点A(3,2)
(1)求上述两函数的表达式;
(2)M(m,n)是反比例函数图象上的一个动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A点作直线AC∥y轴交x轴于点C,交直线MB于点D.若s四边形OADM=6,求点M的坐标,并判断线段BM与DM的大小关系,说明理由;
(3)探索:x轴上是否存在点P.使△OAP是等腰三角形?若存在,求出点P的坐标; 若不存在,说明理由.

解:(1)将A(3,2)分别代入y=,y=ax中,得:2=,3a=2
∴k=6,a=
∴反比例函数的表达式为:y=
正比例函数的表达式为y=x;

(2)BM=DM
理由:∵S△OMB=S△OAC=×|k|=3
∴S矩形OBDC=S四边形OADM+S△OMB+S△OAC=3+3+6=12
即OC•OB=12
∵OC=3
∴OB=4
即n=4
∴m=
∴MB=,MD=3-=
∴MB=MD;

(3)存在.
由(2)得A(3,2),OA==
当OA为等腰三角形的腰时,P(,0)或(-,0)或(6,0),
当OA为等腰三角形的底,P(,0).
∴满足条件的P点坐标为(,0)或(-,0)或(6,0)或(,0).
分析:(1)将A(3,2)分别代入y=,y=ax中,得ak的值,进而可得正比例函数和反比例函数的表达式;
(2)由S△OMB=S△OAC=|k|=3,可得S矩形OBDC=12;即OC•OB=12;进而可得mn的值,故可得BM与DM的大小;比较可得其大小关系;
(3)存在.由(2)可知D(3,4),根据矩形的性质得A(3,2),分为OA为等腰三角形的腰,OA为等腰三角形的底,分别求P点坐标.
点评:此题综合考查了反比例函数,正比例函数等多个知识点.此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知正比例函数和反比例函数的图象都经过点A(3,3).
(1)求正比例函数和反比例函数的解析式;
(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;
(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的二次函数的解析式;
(4)在第(3)问的条件下,二次函数在第一象限的图象上是否存在点E,使四边形OECD的面积S1与四精英家教网边形OABD的面积S满足:S1=
23
S?若存在,求点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知正比例函数y=ax与反比例函数y=
kx
的图象交于点A(3,2)
(1)求上述两函数的表达式;
(2)M(m,n)是反比例函数图象上的一个动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A点作直线AC∥y轴交x轴于点C,交直线MB于点D.若s四边形OADM=6,求点M的坐标,并判断线段BM与DM的大小关系,说明理由;
(3)探索:x轴上是否存在点P.使△OAP是等腰三角形?若存在,求出点P的坐标; 若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正比例函数y=3x与反比例函数y=
kx
(k≠0)
的图象都经过点A和点B,点A的横坐精英家教网标为1,过点A作x轴的垂线,垂足为M,连接BM.
求:(1)这个反比例函数的解析式;
(2)△ABM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知正比例函数y=kx的图象经过点A(-2
3
,a),过点A作AB⊥x轴于点B,△A0B的面积为4
3

(1)求k和a的值;
(2)若一次函数y=nx+2的图象经过点A,并且与X轴相交于点M,问:在x轴上是否存在点P,使得以三点P、A、M组成的三角形AMP为等腰三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知正比例函数和反比例函数的图象都经过点A(3,3).
(1)求正比例函数和反比例函数的解析式;
(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;
(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的三角形的面积.

查看答案和解析>>

同步练习册答案