分析 作DG⊥AC,连接BD、CD,易证△ADE≌△ADG,得AE=AG,只要再证明△BED≌△CGD,即可得到.
解答
解:BE-AC=AE,
理由:作DG⊥AC,连接BD、CD,
∵AD是外角∠BAG的平分线,DE⊥AB,
∴∠DAE=∠DAG,
则在△ADE与△ADG中,
$\left\{\begin{array}{l}{∠DEA=∠DGA}\\{∠EAD=∥GAD}\\{AD=AD}\end{array}\right.$,
∴△ADE≌△ADG(AAS),
∴AE=AG,
∵DF是BC的中垂线,
∴BD=CD,
∴在Rt△BED和Rt△CGD中,
$\left\{\begin{array}{l}{DE=DG}\\{BD=CD}\end{array}\right.$,
∴Rt△BED≌Rt△CGD(HL),
∴BE=CG=AC+AG,AG=AE,
∴BE-AC=AE.
点评 本题主要考查了全等三角形的判定与性质、线段垂直平分线的性质和角平分线的性质,考查了学生综合运用知识解决问题的能力,作辅助线构建全等三角形,是解答本题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com