【题目】如图,在平面直角坐标系xOy中,动点A(a,0)在x轴的正半轴上,定点B(m, n)在第一象限内(m<2≤a).在△OAB外作正方形ABCD和正方形OBEF , 连接FD , 点M为线段FD的中点.作BB1⊥x轴于点B1 , 作FF1⊥x轴于点F1.
(1)填空:由△≌△ , 及B(m, n)可得点F的坐标为 , 同理可得点D的坐标为;(说明:点F , 点D的坐标用含m , n , a的式子表示)
(2)直接利用(1)的结论解决下列问题:
①当点A在x轴的正半轴上指定范围内运动时,点M总落在一个函数图象上,求该函数的解析式(不必写出自变量x的取值范围);
②当点A在x轴的正半轴上运动且满足2≤a≤8时,求点M所经过的路径的长.
【答案】
(1);;;
(2)
解:①设点M的坐标为 .
∵ 点M为线段FD的中点, , ,
可得点M的坐标为 .
∴
消去a,得 .
所以,当点A在x轴的正半轴上指定范围内运动时,相应的点M在运动时总落在直线 上,即点M总落在函数 的图象上.
②如图2,当点A在x轴的正半轴上运动且满足2≤a≤8时,点A运动的路径为线段 ,其中 , ,相应地,点M所经过的路径为直线 上的一条线段 ,其中 , .
而 ,
∴ 点M所经过的路径的长为
【解析】(1)如图1.由△ ≌△ ,及B(m, n)可得点F的坐标为 ,同理可得点D的坐标为 .
【考点精析】根据题目的已知条件,利用线段的中点和两点间的距离的相关知识可以得到问题的答案,需要掌握线段的中点到两端点的距离相等;同轴两点求距离,大减小数就为之.与轴等距两个点,间距求法亦如此.平面任意两个点,横纵标差先求值.差方相加开平方,距离公式要牢记.
科目:初中数学 来源: 题型:
【题目】在矩形ABCO中,O为坐标原点,A在y轴上,C在x轴上,B的坐标为(8,6),P是线段BC上动点,点D是直线y=2x﹣6上第一象限的点,若△APD是等腰直角三角形,则点D的坐标为_____________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一楼房AB后有一假山,其坡度为i=1∶,山坡坡面上E点处有一休息亭,测
得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角
为45°,求楼房AB的高.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE.
(1)求∠DCE的度数;
(2)若AB=4,CD=3AD,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y1=-x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1=y2,记M=y1=y2,下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有( )
A. ③④ B. ②③ C. ②④ D. ①④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系内,⊙C与y轴相切于D点,与x轴相交于A(2,0)、B(8,0)两点,圆心C在第四象限.
(1)求点C的坐标;
(2)连接BC并延长交⊙C于另一点E,若线段BE上有一点P,使得AB2=BPBE,能否推出AP⊥BE?请给出你的结论,并说明理由;
(3)在直线BE上是否存在点Q,使得AQ2=BQEQ?若存在,求出点Q的坐标;若不存在,也请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】适合下列条件的△ABC中,直角三角形的个数为( ) ①a= ,b= ,c= ;
②a=6,∠A=45°;
③∠A=32°,∠B=58°;
④a=7,b=24,c=25.
A.2个
B.3个
C.4个
D.5个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com