精英家教网 > 初中数学 > 题目详情

已知:在△ABC中,∠A=90°,AB=AC,D为AC中点,AE⊥BD于E,延长AE交BC于F,求证:∠ADB=∠CDF.

证明:过A、D分别做BC的垂线,垂足分别为G、H.
设AG=1,那么CG=1,DH=,BH=
tan∠DBH=
又∠GAF=∠DBH,
∴GF=AG=
FH=GH-GF=-=
tan∠FDH==
∴∠DBH=∠FDH
∵∠ADB=∠DBH+∠C,
∠CDF=∠FDH+∠CDH,
∴∠ADB=∠CDF.
分析:可过A、D分别做BC的垂线,设AG的长为1,得出与之相关联的线段的长度,进而利用角正切值相等得出∠DBH=∠FDH,即可得出结论.
点评:本题主要考查了等腰三角形的性质以及由正切值判定两个角相等,无论是证明还是计算题,都应该从不同角度思考,利用已学知识熟练求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、已知:在△ABC中AB=AC,点D在CB的延长线上.
求证:AD2-AB2=BD•CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网(1)化简:(a-
1
a
)÷
a2-2a+1
a

(2)已知:在△ABC中,AB=AC.
①设△ABC的周长为7,BC=y,AB=x(2≤x≤3).写出y关于x的函数关系式;
②如图,点D是线段BC上一点,连接AD,若∠B=∠BAD,求证:△BAC∽△BDA.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知,在△ABC中,∠ABC和∠ACB的平分线交于点M,ME∥AB交BC于点E,MF∥AC交BC于点F.求证:△MEF的周长等于BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知,在△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是
x>3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在△ABC中,∠B<∠C,AD平分∠BAC,AE⊥BC,垂足为点E.∠B=38°,∠C=70°.
①求∠DAE的度数;
②试写出∠DAE与∠B、∠C之间的一般等量关系式(只写结论)

查看答案和解析>>

同步练习册答案