精英家教网 > 初中数学 > 题目详情
2.如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点,顶点M关于x轴的对称点是M′.
(1)求抛物线的解析式;
(2)若直线AM′与此抛物线的另一个交点为C,求△CAB的面积;
(3)是否存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.

分析 (1)根据待定系数法,可得函数解析式;
(2)根据轴对称,可得M′的坐标,根据待定系数法,可得AM′的解析式,根据解方程组,可得C点坐标,根据三角形的面积公式,可得答案;
(3)根据正方形的性质,可得P、Q点坐标,根据待定系数法,可得函数解析式.

解答 解:(1)将A、B点坐标代入函数解析式,得$\left\{\begin{array}{l}{1-b+c=0}\\{9+3b+c=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{b=-2}\\{c=-3}\end{array}\right.$,
抛物线的解析式y=x2-2x-3;
(2)将抛物线的解析式化为顶点式,得
y=(x-1)2-4,
M点的坐标为(1,-4),
M′点的坐标为(1,4),
设AM′的解析式为y=kx+b,
将A、M′点的坐标代入,得
$\left\{\begin{array}{l}{-k+b=0①}\\{k+b=4②}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=2}\\{b=2}\end{array}\right.$,
AM′的解析式为y=2x+2,
联立AM′与抛物线,得
$\left\{\begin{array}{l}{y=x+2}\\{y={x}^{2}-2x-3}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{x}_{1}=-1}\\{{y}_{1}=0}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=5}\\{{y}_{2}=12}\end{array}\right.$
C点坐标为(5,12).
S△ABC=$\frac{1}{2}$×4×12=24;
(3)存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形,
由ABPQ是正方形,A(-1,0)B(3,0),得
P(1,-2),Q(1,2),或P(1,2),Q(1,-2),
①当顶点P(1,-2)时,设抛物线的解析式为y=a(x-1)2-2,
将A点坐标代入函数解析式,得
a(-1-1)2-2=0,
解得a=$\frac{1}{2}$,
抛物线的解析式为y=$\frac{1}{2}$(x-1)2-2,
②当P(1,2)时,设抛物线的解析式为y=a(x-1)2+2,将
A点坐标代入函数解析式,得
a(-1-1)2+2=0,
解得a=-$\frac{1}{2}$,
抛物线的解析式为y=-$\frac{1}{2}$(x-1)2+2,
综上所述:y=$\frac{1}{2}$(x-1)2-2或y=-$\frac{1}{2}$(x-1)2+2,使得四边形APBQ为正方形.

点评 本题考查了二次函数综合题,(1)利用待定系数法求函数解析式;(2)利用轴对称的性质得出M′的解析式,利用待定系数法得出AM′的解析式,利用解方程组得出C点坐标是解题关键;(3)利用正方形的性质得出P、Q点坐标是解题关键,又利用待定系数法求函数解析式,注意要分类讨论,以防遗漏.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,已知直线y=x+k和双曲线y=$\frac{k+1}{x}$(k为正整数)交于A,B两点.
(1)当k=1时,求A、B两点的坐标;
(2)当k=2时,求△AOB的面积;
(3)当k=1时,△OAB的面积记为S1,当k=2时,△OAB的面积记为S2,…,依此类推,当k=n时,△OAB的面积记为Sn,若S1+S2+…+Sn=$\frac{133}{2}$,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,已知⊙O的一条直径AB与弦CD相交于点E,且AC=2,AE=$\sqrt{3}$,CE=1,则图中阴影部分的面积为(  )
A.$\frac{2\sqrt{3}π}{9}$B.$\frac{4\sqrt{3}π}{9}$C.$\frac{2π}{9}$D.$\frac{4π}{9}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.先化简,再求值:($\frac{1}{x+1}-\frac{1}{x-1}$)÷$\frac{4+2x}{{x}^{2}-1}$,其中x=-2+$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.小丽为了测旗杆AB的高度,小丽眼睛距地面1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.端午节是我国的传统节日,人们有吃粽子的习惯.某校数学兴趣小组为了了解本校学生喜爱粽子的情况,随机抽取了50名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(注:每一位同学在任何一种分类统计中只有一种选择)

请根据统计图完成下列问题:
(1)扇形统计图中,“很喜欢”所对应的圆心角为144度;条形统计图中,喜欢“糖馅”粽子的人数为3人;
(2)若该校学生人数为800人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和;
(3)小军最爱吃肉馅粽子,小丽最爱吃糖馅粽子.某天小霞带了重量、外包装完全一样的肉馅、糖馅、枣馅、海鲜馅四种粽子各一只,让小军、小丽每人各选一只.请用树状图或列表法求小军、小丽两人中有且只有一人选中自己最爱吃的粽子的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.课题小组从某市20000名九年级男生中,随机抽取了1000名进行50米跑测试,并根据测试结果绘制了如下尚不完整的统计图表.
等级人数/名
优秀a
良好b
及格150
不及格50
解答下列问题:
(1)a=200,b=600;
(2)补全条形统计图;
(3)试估计这20000名九年级男生中50米跑达到良好和优秀等级的总人数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.化简$\frac{{a}^{2}+2ab+{b}^{2}}{{a}^{2}-{b}^{2}}$-$\frac{b}{a-b}$的结果是(  )
A.$\frac{a}{a-b}$B.$\frac{b}{a-b}$C.$\frac{a}{a+b}$D.$\frac{b}{a+b}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下列运算正确的是(  )
A.($\frac{1}{2}$)-1=-$\frac{1}{2}$B.6×107=6000000C.(2a)2=2a2D.a3•a2=a5

查看答案和解析>>

同步练习册答案