精英家教网 > 初中数学 > 题目详情

如图表示边长为a的正方形纸片剪去一个边长为b的小正方形后余下的纸片.若把余下的纸片剪开后拼成一个四边形,可以用来验证公式a2-b2=(a+b)(a-b).
(1)请你通过对图形的剪拼,画出三种不同拼法的示意图.要求:
①拼成的图形是四边形;
②在图形上画剪切线(用虚线表示);
③在拼出的图形上标出已知的边长.
(2)选择其中一种拼法写出验证上述公式的过程.
作业宝

解:(1)如图:






(2)在图①中,大正方形面积为a2,小正方形面积为b2,所以阴影部分的面积为a2-b2
在图2中,阴影部分为一长方形,长为a+b,宽为a-b,则面积为(a+b)(a-b),
由于两个阴影部分面积相等,所以有a2-b2=(a+b)(a-b)成立.
分析:(1)拼成长方形由两种,拼成等腰梯形一种;
(2)分别表示出两种情况下的面积,而面积是相等的,故可得到结果.
点评:本题考查了平方差公式几何意义的理解,将整式运算与几何图形结合,注意各个量的变化.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,边长为5的正方形OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AG交于点P.
(1)当点E坐标为(3,0)时,试证明CE=EP;
(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)(t>0),结论CE=EP是否成立,请说明理由;
(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,边长为4的等边三角形AOB的顶点O在坐标原点,点A在x轴正半轴上,点B在第一象限.一动点P沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段BP的中点绕点P按顺时针方向旋转60°得点C,点C随点P的运动而运动,连接CP、CA,过点P作PD⊥OB于点D.
(1)填空:PD的长为
3
2
t
3
2
t
用含t的代数式表示);
(2)求点C的坐标(用含t的代数式表示);
(3)在点P从O向A运动的过程中,△PCA能否成为直角三角形?若能,求t的值.若不能,请说明理由;
(4)填空:在点P从O向A运动的过程中,点C运动路线的长为
2
3
2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•义乌市模拟)如图,边长为4的等边△AOB的顶点O在坐标原点,点A在x轴正半轴上,点B在第一象限.一动点P沿x轴以每秒1个单位长度的速度由点O向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.在点P的运动过程中,线段BP的中点为点E,将线段PE绕点P按顺时针方向旋转60°得PC. 
(1)当点P运动到线段OA的中点时,点C的坐标为
7
2
3
2
7
2
3
2

(2)在点P从点O到点A的运动过程中,用含t的代数式表示点C的坐标;
(3)在点P从点O到点A的运动过程中,求出点C所经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,边长为6的正方OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AC交于点P.
(1)当点E坐标为(3,0)时,证明CE=EP;
(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)”,结论CE=EP是否仍然成立,请说明理由;
(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年浙江省翠苑中学九年级下学期3月考数学卷(带解析) 题型:解答题

  如图,边长为4的等边三角形AOB的顶点O在坐标原点,点A在x轴正半轴上,点B在第一象限.一动点P沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段BP的中点绕点P按顺时针方向旋转60°得点C,点C随点P的运动而运动,连接CP、CA,过点P作PD⊥OB于点D.

(1)填空:PD的长为               (用含t的代数式表示);
(2)求点C的坐标(用含t的代数式表示);
(3)在点P从O向A运动的过程中,△PCA能否成为直角三角形?若能,求t的值.若不能,请说明理由;
(4)填空:在点P从O向A运动的过程中,点C运动路线的长为                            

查看答案和解析>>

同步练习册答案