精英家教网 > 初中数学 > 题目详情

如图,在梯形ABCD中,AD∥BC,∠A=∠B=90°,BC=4AD.AB为⊙O的直径,OA=2,CD与⊙O相切于点E,求CD的长.

解:∵AB为⊙O的直径,∠A=∠B=90°,
∴AD、BC均为⊙O的切线,
又CD与⊙O相切于点E,
∴DE=DA,CE=CB,
∴CD=AD+BC,
设AD=x,则BC=4AD=4x,CD=5x,
如图所示,作梯形的高DF,
在Rt△CDF中,DF=AB=2OA=4,CF=CB-BF=CB-AD=3x,CD=5x,
由勾股定理得:DF2+FC2=CD2,得42+(3x)2=(5x)2
解得:x1=1,x2=-1(舍去),
∴CD=5x=5.
分析:由∠A=∠B=90°,利用切线的性质得到AD与BC都与圆O相切,再由CD与圆相切,利用切线长定理得到AD=DE,CE=CB,可得出CD=DE+CE=AD+BC,设AD=x,得到BC=4AD=4x,确定出CD为5x,作出梯形的高DF,如图所示,在直角三角形CDF中,表示出三角形三边,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可求出CD的长.
点评:此题考查了切线的性质,切线长定理,勾股定理,以及方程的思想,熟练掌握切线的性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案