精英家教网 > 初中数学 > 题目详情
已知:如图,抛物线与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).

(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
(1)y=-;(2)Q(1,0);(3)存在,P1,2)或P2,2)或P3,3)或P4,3).

试题分析:(1)把点A和点C的坐标代入,利用待定系数法即可求出字母a和c的值,从而求出函数关系式;(2)设点Q的坐标为(m,0),根据EQ∥AC,得到△BQE∽△BAC,利用相似三角形对应高的比等于相似比,用字母m表示出BG的长,然后根据表示出△CQE面积是关于字母m的二次函数,根据二次函数的性质计算出面积的最大值;(3)根据题意,分三种情况,先画出图形,然后根据等腰三角形的性质解答.
试题解析:(1)由题意得
解得
∴所求抛物线得解析式为:y=-.
(2)设点Q的坐标为(m,0),过点E作EG⊥X轴与点G
由-=0,得=-2,.
∴点B的坐标为(-2,0).
∴AB=6,BQ= m+2.
又∵QE∥AC,
∴△BQE∽△BAC,
.
.
∴EG= .

=
=
= 
=.
又∵-2≤m≤4,
∴当m=1时,有最大值为3,此时Q(1,0).

(3)存在.在△ODF中
①若DO=DF时,
∵A(4,0),D(2,0),
∴AD=OD=DF=2.
又在RT△AOC中,OA=OC=4,
∴∠OAC=45°.
∴∠DFA=∠OAC=45°.
∴∠ADF=90°.
此时点F的坐标为(2,2).
得x1,x2.
此时点P的坐标为:P(,2)或P(,2).

②若OF=DF时,过点F作FM⊥x轴与点M,
由等腰三角形的性质得:OM=OD=1.
∴F(1,3).
由由得x1,x2.
此时点P的坐标为:P(,3)或P(,3).

③若OD=OF,
∵OA=OC=4,且∠AOC=90°,
∴AC=.
∴点O到AC的距离为.
而OF=OD=2<,与OF≥矛盾,
∴AC上不存在点使得OF=OD=2.
此时不存在这样直线L,使得△ODF是等腰三角形.
综上所述,存在这样的直线L,使得△ODF是等腰三角形.
所求点P的坐标为:
P1,2)或P2,2)或P3,3)或P4,3).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

一场篮球赛中,小明跳起投篮,已知球出手时离地面高米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,若篮球运行的轨迹为抛物线,篮圈中心距离地面3米.

(1)建立如图的平面直角坐标系,求抛物线的解析式;
(2)问此球能否投中?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,将抛物线C1:y=x2+3先向右平移1个单位,再向下平移7个单位得到抛物线C2。C2的图象与x轴交于A、B两点(点A在点B的左侧)。

(1)求抛物线C2的解析式;
(2)若抛物线C2的对称轴与x轴交于点C,与抛物线C2交于点D,与抛物线C1交于点E,连结AD、DB、BE、EA,请证明四边形ADBE是菱形,并计算它的面积;
(3)若点F为对称轴DE上任意一点,在抛物线C2上是否存在这样的点G,使以O、B、F、G四点为顶点的四边形是平行四边形,如果存在,请求出点G的坐标,如果不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线y=2(x﹣3)2+1的顶点坐标是(  )
A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与x轴交于点A、B,且A点的坐标为(1,0),与y轴交于点C(0,1).

(1)求抛物线的解析式,并求出点B坐标;
(2)过点B作BD∥CA交抛物线于点D,连接BC、CA、AD,求四边形ABCD的周长;(结果保留根号)
(3)在x轴上方的抛物线上是否存在点P,过点P作PE垂直于x轴,垂足为点E,使以B、P、E为顶点的三角形与△CBD相似?若存在请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是  

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将抛物线y=3x2的图象先向上平移3个单位,再向右平移4个单位所得的解析式为(     )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知抛物线y=x2+3x+c经过三点的大小关系为(    )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知(-3,m)、(1,m)是抛物线y=2x2+bx+3的两点,则b=____.

查看答案和解析>>

同步练习册答案