精英家教网 > 初中数学 > 题目详情
如图,抛物线与x轴交于点A、B,且A点的坐标为(1,0),与y轴交于点C(0,1).

(1)求抛物线的解析式,并求出点B坐标;
(2)过点B作BD∥CA交抛物线于点D,连接BC、CA、AD,求四边形ABCD的周长;(结果保留根号)
(3)在x轴上方的抛物线上是否存在点P,过点P作PE垂直于x轴,垂足为点E,使以B、P、E为顶点的三角形与△CBD相似?若存在请求出P点的坐标;若不存在,请说明理由.
(1),B(﹣1,0);(2);(3)存在,P().

试题分析:(1)利用待定系数法求出抛物线的解析式,点B坐标可由对称性质得到,或令y=0,由解析式得到;
(2)关键是求出点D的坐标,然后利用勾股定理分别求出四边形ABCD四个边的长度;
(3)本问为存在型问题.可以先假设存在,然后按照题意条件求点P的坐标,如果能求出则点P存在,否则不存在.注意三角形相似有两种情形,需要分类讨论.
试题解析:(1)∵点A(1,0)和点C(0,1)在抛物线上,∴,解得:a=﹣1,b=1,∴抛物线的解析式为:,抛物线的对称轴为y轴,则点B与点A(1,0)关于y轴对称,∴B(﹣1,0);
(2)设过点A(1,0),C(0,1)的直线解析式为,可得:,解得k=﹣1,b=1,∴.∵BD∥CA,∴可设直线BD的解析式为,∵点B(﹣1,0)在直线BD上,∴,得,∴直线BD的解析式为:.将代入抛物线的解析式,得:,解得:x1=2,x2=﹣1,∵B点横坐标为﹣1,则D点横坐标为2,D点纵坐标为y=﹣2﹣1=﹣3,∴D点坐标为(2,﹣3).如答图①所示,过点D作DN⊥x轴于点N,则DN=3,AN=1,BN=3,在Rt△BDN中,BN=DN=3,由勾股定理得:BD=;在Rt△ADN中,DN=3,AN=1,由勾股定理得:AD=;又OA=OB=OC=1,OC⊥AB,由勾股定理得:AC=BC=;∴四边形ABCD的周长为:AC+BC+BD+AD=

(3)假设存在这样的点P,则△BPE与△CBD相似有两种情形:(I)若△BPE∽△BDC,如答图②所示,
则有,即,∴PE=3BE.设OE=m(m>0),则E(﹣m,0),BE=1﹣m,PE=3BE=3﹣3m,∴点P的坐标为(﹣m,3﹣3m),∵点P在抛物线上,∴,解得m=1或m=2,当m=1时,点E与点B重合,故舍去;当m=2时,点E在OB左侧,点P在x轴下方,不符合题意,故舍去.因此,此种情况不存在;

(II)若△EBP∽△BDC,如答图③所示,则有,即,∴BE=3PE.设OE=m(m>0),则E(m,0),BE=1+m,PE=BE=,∴点P的坐标为().∵点P在抛物线上,∴,解得或m=,∵m>0,故舍去,∴m=,点P的纵坐标为:,∴点P的坐标为().
综上所述,存在点P,使以B、P、E为顶点的三角形与△CBD相似,点P的坐标为().
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,抛物线与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).

(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2-2mx+m2+2m-1①有y=(x-m)2+2m-1②,
所以抛物线顶点坐标为(m,2m-1),即x=m③,y=2m-1④.
当m的值变化时,x,y的值也随之变化,因而y的值也随x值的变化而变化.
将③代入④,得y=2x-1⑤.可见,不论m取任何实数,抛物线顶点的纵坐标y和横坐标x都满足关系式:y=2x-1;
根据上述阅读材料提供的方法,确定点(-2m, m-1)满足的函数关系式为_______.
(2)根据阅读材料提供的方法,确定抛物线顶点的纵坐标y与横坐标x之间的关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

把抛物线y=x2向左平移1个单位,所得的新抛物线的函数表达式为( )
A.y=x2+1B.y=(x+1) 2C.y=x2-1D.y=(x-1) 2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

关于二次函数y=x2-4x+3,下列说法错误的是(        )
A.当x<1时,y随x的增大而减小B.它的图象与x轴有交点
C.当1<x<3时,y>0D.顶点坐标为(2,-1 )

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将二次函数的图像向左平移2个单位再向下平移4个单位,所得函数表达式是,我们来解释一下其中的原因:不妨设平移前图像上任意一点P经过平移后得到点P’,且点P’的坐标为,那么P’点反之向右平移2个单位,再向上平移4个单位得到点,由于点P是二次函数的图像上的点,于是把点P(x+2,y+4)的坐标代入再进行整理就得到.类似的,我们对函数的图像进行平移:先向右平移1个单位,再向上平移3个单位,所得图像的函数表达式为_____.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1,x2,且﹣1<x1<0,1<x2<2,下列结论正确的是(  )
A.a<0 B.a﹣b+c<0
C.>1D.4ac﹣b2<﹣8a

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若二次函数的图象经过点P(-3,2),则该图象必经过点(   )
A.(2,3) B.(-2,-3)C.(3,2)D.(-3,-2)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数的最小值是           

查看答案和解析>>

同步练习册答案