精英家教网 > 初中数学 > 题目详情

(1)如图1,AB∥CD,AB=CD,直线EF分别交AB、CD 于B、C,且BF=EC.求证:∠A=∠D.
(2)如图2,梯形ABCD中,AD∥BC,∠A=90°,BC=2,∠ABD=15°,∠C=60°.①求∠BDC的度数;②求AB的长.

(1)证明:∵AB∥CD,
∴∠ABC=∠DCB,
∵EC=BF,
∴EC+BC=BF+BC,
∴EB=CF,
∵在△ABE和△DCF中

∴△ABE≌△DCF(SAS).
∴∠A=∠D.

(2)解:∵AD∥BC,∠A=90°,
∴∠ABC=90°,
∵,∠ABD=15°,
∴∠DBC=75°,
又∵∠C=60°,
∴∠BDC=45°.

过D作DE⊥BC于E,过B作BF⊥DC于F,
∵∠C=60°,
∴∠FBC=30°,
∴CF=BC=×2=1,
∵∠DBC=75°,
∴∠DBF=45°,
∴∠BDF=45°=∠DBF,
∴BF=DF,
在Rt△BFC中,由勾股定理得:BF==
∴DF=,DC=1+
在△DBC中,由三角形的面积公式得:BC×DE=DC×BF,
×2×DE=×(1+)×
DE=
∵∠ABC=90°,DE⊥BC,
∴AB∥DE,
∵AD∥BC,
∴四边形ABED是平行四边形,
∴AB=DE=
分析:(1)求出BE=CF,∠ABC=∠DCF,根据SAS证出△ABE≌△DCF即可;
(2)求出∠DBC,根据三角形内角和定理求出∠BDC即可;过D作DE⊥BC于E,过B作BF⊥DC于F,求出CF、BF、DF,根据三角形面积公式求出DE,即可求出答案.
点评:本题考查了平行四边形性质,全等三角形的性质和判定,平行线性质,三角形的面积公式,解直角三角形等知识点的应用,主要考查学生综合运用性质进行推理的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,如果AB∥CD,那么下面说法错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线AB、CD、MN相交于O,∠DOB=60°,BO⊥FO,OM平分∠DOF.
(1)求∠MOF的度数;
(2)求∠AON的度数;
(3)请直接写出图中所有与∠AON互余的角.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线AB、CD被直线CE所截.
(1)若∠C=∠3,则∠1与∠C有什么关系,并加以说明;
(2)写出能使AB∥CD的所有可能条件.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线AB、CD、EF相交于点O,∠COE=2∠AOE,已知∠BOC=105°,那么∠BOF=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线AB.CD相交于点O,OM⊥AB,NO⊥CD.
(1)若∠1=∠2,求∠AOD的度数;
(2)若∠1=
14
∠BOC,求∠2和∠MOD.

查看答案和解析>>

同步练习册答案