精英家教网 > 初中数学 > 题目详情

将连续自然数1,2,3,…,nn≥3)的排列顺序打乱,重新排列成a1a2a3,…,an.若(a1-1)(a2-2)(a3-3)…(ann)恰为奇数,则n(  )

(A)一定是偶数                     (B)一定是奇数

(C)可能是奇数,也可能是偶数       (D)一定是2m-1(m是奇数)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、现将连续自然数1至2009按图中的方式排列成一个长方形队列,再用正方形任意框出16个数.

(1)设任意一个这样的正方形框中的最小数为n,请用n的代数式表示该框中的16个数,然后填入右表中相应的空格处,并求出这16个数中的最小数
n
和最大数
n+24
,然后填入右表中相应的空格处,并求出这16个数的和
16(n+12)
.(用n的代数式表示)
(2)在图中,要使一个正方形框出的16个数之和和分别等于832、2000、2008是否可能?若不可能,请说明理由;若可能,请求出该正方形框出的16个数中的最小数和最大数.
(3)计算出该长方形队列中,共可框出多少个这样不同的正方形框.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、现将连续自然数1至2009按图中的方式排列成一个长方形队列,再用正方形任意框出16个数.

(1)设任意一个这样的正方形框中的最小数为n,请用n的代数式表示该框中的16个数,然后填入右表中相应的空格处,并求出这16个数中的最小数和最大数,然后填入右表中相应的空格处,并求出这16个数的和.
(n的代数式表示)
(2)在图中,要使一个正方形框出的16个数之和和分别等于832、2000、2008是否可能?若不可能,请说明理由;若可能,请求出该正方形框出的16个数中的最小数和最大数.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、现将连续自然数1至2009按图中的方式排列成一个长方形队列,再用正方形任意框出四行四列16个数:
(1)设任意一个这样的正方形框中的最小数为n,则这16个数的和为
16n+192
(用n的代数式表示);
(2)若一个正方形框出的16个数之和等于2000,则该正方形框出的16个数中的最小数和最大数之和为
250

查看答案和解析>>

科目:初中数学 来源: 题型:

将连续自然数1,2,3,…,n(n≥3)的排列顺序打乱,重新排列成a1,a2,a3,…,an.若(a1-1)(a2-2)(a3-3)…(an-n)恰为奇数,则(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

现将连续自然数1至2009按图中的方式排列成一个长方形队列,再用正方形任意框出16个数.

设任意一个这样的正方形框中的最小数为n,请用n的代数式表示该框中的16个数,然后填入右表中相应的空格处,并求出这16个数中的最小数和最大数,然后填入右表中相应的空格处,并求出这16个数的和.(用n的代数式表示)

查看答案和解析>>

同步练习册答案