精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,一次函数的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点.已知点C的坐标是(6,-1),D(n,3).

(1)求m的值和点D的坐标.

(2)求的值.

(3)根据图象直接写出:当x为何值时,一次函数的值大于反比例函数的值?

【答案】(1)m=-6,点D的坐标为(-2,3);(2);(3)当时,一次函数的值大于反比例函数的值.

【解析】

(1)将点C的坐标(6,-1)代入即可求出m,再把D(n,3)代入反比例函数解析式求出n即可.

(2)根据C(6,-1)、D(-2,3)得出直线CD的解析式,再求出直线CDx轴和y轴的交点即可,得出OA、OB的长,再根据锐角三角函数的定义即可求得

(3)根据函数的图象和交点坐标即可求得.

⑴把C(6,-1)代入,得.

则反比例函数的解析式为

代入,得

∴点D的坐标为(-2,3).

⑵将C(6,-1)、D(-2,3)代入,得

,解得.

∴一次函数的解析式为

∴点B的坐标为(0,2),点A的坐标为(4,0).

在在中,

.

⑶根据函数图象可知,当时,一次函数的值大于反比例函数的值

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0), (2,6),点D为AB上一点,且BD=2AD,双曲线y=(k>0)经过点D,交BC于点E.

(1)求双曲线的解析式;

(2)求四边形ODBE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是以BC为直径的半圆O的切线,D为半圆上一点,ADABADBC的延长线相交于点E.

(1)求证:AD是半圆O的切线;

(2)连结CD,求证:∠A=2∠CDE;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4000/2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为1202

若购买者一次性付清所有房款,开发商有两种优惠方案:

方案一:降价8%,另外每套楼房赠送a元装修基金;

方案二:降价10%,没有其他赠送.

1)请写出售价y(元/2)与楼层x1≤x≤23x取整数)之间的函数关系式;

2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,若水面下降2m,则水面宽度增加( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,扇形OAB与扇形OCD的圆心角都是90°,连接ACBD.

(1)求证:ACBD

(2)OA2 cmOC1 cm,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,PAPB是⊙O的切线;AB是切点;连结OAOBOP.

①若∠COP=DOP,求证:AC=BD

②连结CD,设PCD的周长为l,若l=2AP,判断直线CD与⊙O的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的边ADx轴平行,A、B两点的横坐标分别为13,反比例函数y=的图象经过A、B两点,则菱形ABCD的面积是(  )

A. 4 B. 4 C. 2 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图5,在A岛周围25海里水域有暗礁,一轮船由西向东航行到O处时,发现A岛在北偏东60°方向,轮船继续前行20海里到达B处发现A岛在北偏东45°方向,该船若不改变航向继续前进,有无触礁的危险? (参考数据:

查看答案和解析>>

同步练习册答案