精英家教网 > 初中数学 > 题目详情
如图,在△OAB中,OA=OB=2,∠OAE=30°,⊙O上的E点是△OAB的边AB的中点,⊙O分别交OA、OB于C、D,求图中阴影部分的面积(结果保留字母π).
分析:由图易知:阴影部分的面积=三角形AOB的面积-扇形OCD的面积,所以要求阴影部分的面积,就要通过解直角三角形,求得∠AOB的度数以及圆的半径OE的长,可连接OE,在构建的Rt△AOE中,求得上述值.
解答:解:连接OE,
∵OA=OB,E点是AB的中点,
∴OE⊥AB,
∴AB是⊙O的切线,

∵∠OAE=30°,OA=OB=2,
∴OE=1,AE=
3
,∠AOB=120°,
∴AB=2
3

S阴影部分的面积=S△AOB-S扇形OCD=
1
2
AB×OE-
120π×12
360
=
3
-
1
3
π.
点评:本题主要考查了解直角三角形的应用和扇形的面积公式的计算方法,属于基础题,求出圆的半径及∠AOB的度数是解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•泸州)如图,在△OAB中,C是AB的中点,反比例函数y=
k
x
 (k>0)在第一象限的图象经过A、C两点,若△OAB面积为6,则k的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△OAB中,OA=OB,以点O为圆心的⊙0经过AB的中点C,直线AO与⊙0相交于点D、E,连接CD、CE.
(1)求证:AB是⊙0的切线;
(2)求证:△ACD∽△AEC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△OAB中,C是AB的中点,反比例函数y=
kx
(k>0)在第一象限的图象经过A,C两点,若△OAB面积为6,则k的值为
4
4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△OAB中,∠B=90°,∠BOA=30°,OA=4,将△OAB绕点O按逆时针方向旋转至△OA′B′,C点的坐标为(0,4).
(1)求A′点的坐标;
(2)求过C,A′,A三点的抛物线y=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网(创新学习)如图,在△OAB中,∠B=90°,∠BOA=30°,OA=4,将△OAB绕点O按逆时针方向旋转至△OA′B′,C点的坐标为(0,4).
(1)求A′点的坐标;
 

(2)求过C,A′,A三点的抛物线y=ax2+bx+c的解析式;
 

(3)在(2)中的抛物线上是否存在点P,使以O,A,P为顶点的三角形是等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案