精英家教网 > 初中数学 > 题目详情

在平面直角坐标系xOy中,直线y=-x+m经过点A(2,0),交y轴于点B.点D为x轴上一点,且S△ADB=1.
(1)求m的值;
(2)求线段OD的长;
(3)当点E在直线AB上(点E与点B不重合),且∠BDO=∠EDA,求点E的坐标.

解:(1)∵直线y=-x+m经过点A(2,0),
∴0=-2+m,
∴m=2;

(2)∵直线y=-x+2交y轴于点B,
∴点B的坐标为(0,2),
∴OB=2,
∵S△ADB=AD•OB=1,
∴AD=1,
∵点A的坐标为(2,0),
∴点D的坐标为(1,0)或(3,0),
∴OD=1或OD=3;

(3)①当点D的坐标为(1,0)时,如图所示,
取点B′(0,-2),连接B′D并延长,交直线BA于点E.
∵OB=OB′,AO⊥BB′于O,
∴OD为BB′的垂直平分线.
∴DB=DB′,
∴∠1=∠2.
又∵∠2=∠3,
∴∠1=∠3,
设直线B′D的解析式为y=kx-2(k≠0),
∵直线B′D经过点D(1,0),
∴0=k-2,
∴k=2,
∴直线B′D的解析式为y=2x-2,
联立得
解得
∴点E的坐标为();
②当点D的坐标为(3,0)时,如图所示,
取点B′(0,-2),连接B′D,交直线BA于点E,
同①的方法,可得∠1=∠2,直线B′D的解析式为y=x-2,
联立得
解得
∴点E的坐标为(),
综上所述,点E的坐标为()或().
分析:(1)把点A的坐标代入直线解析式进行计算即可求出m的值;
(2)根据三角形的面积求出AD的长度,然后分点D在点A的左边与右边两种情况得到点D的坐标,再根据两点间的距离得到OD的长度;
(3)找出点B关于x轴的对称点B′,根据轴对称性作出∠BDO=∠EDA从而确定出点E的位置,再分点D的两种情况利用待定系数法求出直线B′D的解析式,然后联立直线AB的解析式,解方程组即可得到点E的坐标.
点评:本题考查了待定系数法求直线解析式,两点间的距离,三角形的面积,A、D在x轴上的位置不明确,所以要注意分点D在点A的左右两边两种情况讨论求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有
4
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c的对称轴是x=1,并且经过(-2,-5)和(5,-12)两点.
(1)求此抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标;
(3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7
2
?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知A(2,-2),B(0,-2),在坐标平面中确定点P,使△AOP与△AOB相似,则符合条件的点P共有
5
5
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步练习册答案