如图,AB是半圆的直径,点O是圆心,点C是OA的中点,CD⊥OA交半圆于点D,点E是的中点,连接AE、OD,过点D作DP∥AE交BA的延长线于点P.
(1)求∠AOD的度数;
(2)求证:PD是半圆O的切线.
【考点】垂径定理;平行线的性质;圆周角定理;切线的判定.
【分析】(1)根据CO与DO的数量关系,即可得出∠CDO的度数,进而求出∠AOD的度数;
(2)利用点E是的中点,进而求出∠EAB=30°,即可得出∠AFO=90°,即可得出答案.
【解答】(1)解:∵AB是半圆的直径,点O是圆心,点C是OA的中点,
∴2CO=DO,∠DCO=90°,
∴∠CDO=30°,
∴∠AOD=60°;
(2)证明:如图,连接OE,
∵点E是的中点,
∴=,
∵由(1)得∠AOD=60°,
∴∠DOB=120°,
∴∠BOE=60°,
∴∠EAB=30°,
∴∠AFO=90°,
∵DP∥AE,
∴PD⊥OD,
∴直线PD为⊙O的切线.
科目:初中数学 来源: 题型:
如图,已知抛物线y=x2+bx+c的顶点坐标为M(0,﹣1),与x轴交于A、B两点.
(1)求抛物线的解析式;
(2)判断△MAB的形状,并说明理由;
(3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连接MC,MD,试判断MC、MD是否垂直,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com