精英家教网 > 初中数学 > 题目详情
已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.

(1)求证:直线EF是⊙O的切线;
(2)当直线DF与⊙O相切时,求⊙O的半径.
(1)证明见解析;(2)⊙O的半径是.

试题分析:(1)连接OE,得到∠OEB =60°,从而OE∥AC.,根据平行线的性质即可得到直线EF是⊙O的切线;
(2)连接DF,DE.构造直角三角形,解直角三角形即可。
试题解析:(1)连接OE
∵△ABC是等边三角形,
∴∠ABC=∠C=60°.

∵OB="OE,"
∴∠OEB=∠C =60°,
∴OE∥AC.
∵EF⊥AC,
∴∠EFC=90°.
∴∠OEF=∠EFC=90°.
∴OE⊥EF,
∵⊙O与BC边相交于点E,
∴E点在圆上.
∴EF是⊙O的切线;
(2)连接DF,DE.
∵DF是⊙O的切线,
∴∠ADF=∠BDF=90°
设⊙O的半径为r,则BD=2r,
∵AB=4,
∴AD=4-2r,
∵BD=2r,∠B=60°,
∴DE=r,
∵∠BDE=30°,∠BDF="90°."
∴∠EDF=60°,
∵DF、EF分别是⊙O的切线,
∴DF=EF=DE=r,
在Rt△ADF中,
∵∠A=60°,
∴tan∠DFA= 
解得.
∴⊙O的半径是
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,AB、BC、CD分别与⊙O相切与E,F,G,且AB∥CD,BO=6㎝,CO=8㎝,求BC的长。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,AB=AC=5,BC=6,点D为BC边上一动点(不与点B重合),以D为圆心,DC的长为半径作⊙D. 当⊙D与AB边相切时,BD的长为_________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知⊙O的半径为1,等腰直角三角形ABC的顶点B的坐标为(,0),CAB="90°," AC=AB,顶点A在⊙O上运动.

(1)设点A的横坐标为x,△ABC的面积为S,求S与x之间的函数关系式,并求出S的最大值与最小值;(2)当直线AB与⊙O相切时,求AB所在直线对应的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠C=90°,AC=4,BC=3.

(1)该三角形的外接圆的半径长等于     
(2)用直尺和圆规作出该三角形的内切圆(不写作法,保留作图痕迹),并求出该三角形内切圆的半径长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC内接于半圆,AB为直径,过点A作直线MN,若∠MAC=∠ABC.

(1)求证:MN是半圆的切线.
(2)设D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F,求证:FD=FG.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,从⊙O外一点P引圆的两条切线PA、PB,切点分别是A、B,如果∠APB=60o,线段PA=10,那么弦AB的长是(    )

A. 10         B. 12        C.        D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在⊙O中,,∠AOB=122°,则∠AOC的度数为(   )
A.122°B.120°C.61°D.58°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是
 
A.猫先到达B地; B.老鼠先到达B地;
C.猫和老鼠同时到达B地; D.无法确定.

查看答案和解析>>

同步练习册答案