精英家教网 > 初中数学 > 题目详情
如图,△ABC内接于半圆,AB为直径,过点A作直线MN,若∠MAC=∠ABC.

(1)求证:MN是半圆的切线.
(2)设D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F,求证:FD=FG.
(1)证明见解析;(2)证明见解析.

试题分析:(1)根据圆周角定理推论得到∠ACB=90°,即∠ABC+∠CAB=90°,而∠MAC=∠ABC,则∠MAC+∠BCA=90°,即∠MAB=90°,根据切线的判定即可得到结论;
(2)连AD,根据圆周角定理推论得到∠ABC=90°,由DE⊥AB得到∠DEB=90°,则∠1+∠5=90°,∠3+∠4=90°,又D是弧AC的中点,即弧CD=弧DA,得到∠3=∠5,于是∠1=∠4,利用对顶角相等易得∠1=∠2,则有FD=FG.
试题解析:(1)证明:∵AB为直径,
∴∠ACB=90°,
∴∠ABC+∠CAB=90°,
而∠MAC=∠ABC,
∴∠MAC+∠BCA=90°,即∠MAB=90°,
∴MN是半圆的切线;
(2)解:如图

∵AB为直径,
∴∠ACB=90°,
而DE⊥AB,
∴∠DEB=90°,
∴∠1+∠5=90°,∠3+∠4=90°,
∵D是弧AC的中点,即弧CD=弧DA,
∴∠3=∠5,
∴∠1=∠4,
而∠2=∠4,
∴∠1=∠2,
∴FD=FG.
考点: 1.切线的判定;2.圆周角定理.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.

(1)求证:直线EF是⊙O的切线;
(2)当直线DF与⊙O相切时,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

点P为⊙O内一点,若⊙O 的直径是10,OP= 4,则过点P的最短的弦长是           

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,OA、OB为⊙O的半径, C、D分别为OA、OB的中点,求证:AD=BC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知⊙O的弦AB=8cm,圆心O到弦AB的距离为3cm,则⊙O的直径为_______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AC、BD为圆O的两条互相垂直的直径,动点P从圆心O出发,沿O→C→D→O的路线作匀速运动,设运动时间为t秒,∠APB的度数为y度,那么表示y与t之间函数关系的图象大致为(  ).
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图1,在⊙O中,弦AC和BD相交于点E,,若∠BEC=110°,则∠BDC(   )
A.35°B.45°C.55°D.70°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,则⊙O的面积是(  )
A.16πcm2B.25πcm2C.48πcm2D.9πcm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,边长为1的小正方形构成的网格中,⊙O的半径为1,则图中阴影部分两个小扇形的面积之和为       (结果保留π)

查看答案和解析>>

同步练习册答案