3£®Èçͼ1ÊÇÒ»¸ö³¤Îª4a¡¢¿íΪbµÄ³¤·½ÐΣ¬ÑØÍ¼ÖÐÐéÏßÓüôµ¶Æ½¾ù·Ö³ÉËÄ¿éС³¤·½ÐΣ¬È»ºóÓÃËÄ¿éС³¤·½ÐÎÆ´³ÉµÄÒ»¸ö¡°»ØÐΡ±Õý·½ÐΣ¨Èçͼ2£©£®

£¨1£©Í¼¢ÚÖеÄÒõÓ°²¿·ÖµÄÃæ»ýΪ£¨b-a£©2£»
£¨2£©¹Û²ìͼ¢ÚÇëÄãд³ö £¨a+b£©2£¬£¨a-b£©2£¬abÖ®¼äµÄµÈÁ¿¹ØÏµÊÇ£¨a+b£©2-£¨a-b£©2=4ab£»
£¨3£©¸ù¾Ý£¨2£©ÖеĽáÂÛ£¬Èôx+y=4£¬xy=$\frac{9}{4}$£¬Ôò£¨x-y£©2=7£»
£¨4£©Êµ¼ÊÉÏͨ¹ý¼ÆËãͼÐεÄÃæ»ý¿ÉÒÔ̽ÇóÏàÓ¦µÄµÈʽ£®Èçͼ¢Û£¬Äã·¢ÏֵĵÈʽÊÇ£¨a+b£©•£¨3a+b£©=3a2+4ab+b2£®

·ÖÎö £¨1£©ÒõÓ°²¿·ÖΪ±ß³¤Îª£¨b-a£©µÄÕý·½ÐΣ¬È»ºó¸ù¾ÝÕý·½ÐεÄÃæ»ý¹«Ê½Çó½â£»
£¨2£©ÔÚͼ2ÖУ¬´óÕý·½ÐÎÓÐСÕý·½ÐκÍ4¸ö¾ØÐÎ×é³É£¬Ôò£¨a+b£©2-£¨a-b£©2=4ab£»    
£¨3£©ÓÉ£¨2£©µÄ½áÂ۵õ½£¨x+y£©2-£¨x-y£©2=4xy£¬ÔÙ°Ñx+y=4£¬x•y=$\frac{9}{4}$µÃµ½£¨x-y£©2=7£»
£¨4£©¹Û²ìͼÐεõ½±ß³¤Îª£¨a+b£©Ó루3a+b£©µÄ¾ØÐÎÓÉ3¸ö±ß³¤ÎªaµÄÕý·½ÐΡ¢4¸ö±ß³¤Îªa¡¢bµÄ¾ØÐκÍÒ»¸ö±ß³¤ÎªbµÄÕý·½ÐÎ×é³É£¬ÔòÓУ¨a+b£©•£¨3a+b£©=3a2+4ab+b2£®

½â´ð ½â£º£¨1£©ÒõÓ°²¿·ÖΪ±ß³¤Îª£¨b-a£©µÄÕý·½ÐΣ¬ËùÒÔÒõÓ°²¿·ÖµÄÃæ»ý£¨b-a£©2£¬
¹Ê´ð°¸Îª£º£¨b-a£©2£»

£¨2£©Í¼2ÖУ¬Óñ߳¤Îªa+bµÄÕý·½ÐεÄÃæ»ý¼õÈ¥±ß³¤Îªb-aµÄÕý·½ÐεÈÓÚ4¸ö³¤¿í·Ö±ða¡¢bµÄ¾ØÐÎÃæ»ý£¬
ËùÒÔ£¨a+b£©2-£¨a-b£©2=4ab£¬
¹Ê´ð°¸Îª£º£¨a+b£©2-£¨a-b£©2=4ab£»    

£¨3£©¡ß£¨x+y£©2-£¨x-y£©2=4xy£¬
¶øx+y=4£¬x•y=$\frac{9}{4}$£¬
¡à42-£¨x-y£©2=4¡Á$\frac{9}{4}$£¬
¡à£¨x-y£©2=7£¬
¹Ê´ð°¸Îª£º7£»

£¨4£©±ß³¤Îª£¨a+b£©Ó루3a+b£©µÄ¾ØÐÎÃæ»ýΪ£¨a+b£©£¨3a+b£©£¬ËüÓÉ3¸ö±ß³¤ÎªaµÄÕý·½ÐΡ¢4¸ö±ß³¤Îªa¡¢bµÄ¾ØÐκÍÒ»¸ö±ß³¤ÎªbµÄÕý·½ÐÎ×é³É£¬
¡à£¨a+b£©•£¨3a+b£©=3a2+4ab+b2£®
¹Ê´ð°¸Îª£º£¨a+b£©•£¨3a+b£©=3a2+4ab+b2£®

µãÆÀ ±¾Ì⿼²éÁËÍêȫƽ·½¹«Ê½µÄ¼¸ºÎ±³¾°£ºÀûÓÃÃæ»ý·¨Ö¤Ã÷Íêȫƽ·½¹«Ê½£¨a-b£©2=a2-2ab+b2£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬ÒÑÖªC£¬DÊÇ·´±ÈÀýº¯Êýy=$\frac{m}{x}$ͼÏóÔÚµÚÒ»ÏóÏÞÄڵķÖÖ§ÉϵÄÁ½µã£¬Ö±ÏßCD·Ö±ð½»xÖᣬyÖáÓÚA£¬BÁ½µã£¬ÉèC£¬DµÄ×ø±ê·Ö±ðÊÇ£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬Á¬½áOC£¬OD£®
£¨1£©ÇóÖ¤£ºy1£¼OC£¼y1+$\frac{m}{{y}_{1}}$£»
£¨2£©Èô¡ÏBOC=¡ÏAOD=¦Á£¬tan¦Á=$\frac{1}{3}$£¬OC=$\sqrt{10}$£¬ÇóÖ±ÏßCDµÄ½âÎöʽ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬·´±ÈÀýº¯ÊýͼÏóÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹µÃS¡÷POC=S¡÷POD£¿Èô´æÔÚ£¬Çë¸ø³öÖ¤Ã÷£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Èçͼ£¬ABΪ¡ÑOµÄÖ±¾¶£¬ACΪÏÒ£¬OD¡ÎBC½»ACÓÚµãD£¬ÈôBC=20cm£¬ÔòOD=10cm£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Ð¡Ã÷ÔÚÆ´Í¼Ê±£¬·¢ÏÖ8¸öÒ»Ñù´óСµÄ³¤·½ÐΣ¬Ç¡ºÃ¿ÉÒÔÆ´³ÉÒ»¸ö´óµÄ³¤·½ÐÎÈçͼ£¨1£©£»Ð¡ºì¿´¼ûÁË£¬Ëµ£º¡°ÎÒÒ²À´ÊÔÒ»ÊÔ£®¡±½á¹ûСºìÆßÆ´°Ë´Õ£¬Æ´³ÉÁËÈçͼ£¨2£©ÄÇÑùµÄÕý·½ÐΣ¬Öм仹ÁôÏÂÁËÒ»¸ö¶´£¬Ç¡ºÃÊDZ߳¤Îª5mmµÄСÕý·½ÐΣ¬Ôòÿ¸öС³¤·½ÐεÄÃæ»ýΪ375mm2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖª|a|=8£¬|b|=3£¬ÇÒa£¼b£¬Ôòa-bµÄÖµÊÇ-11ºÍ-5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖª£¬ÔÚÌÝÐÎABCDÖУ¬AD¡ÎBC£¬AD=4£¬AB=CD=6£¬¡ÏB=60¡ã£¬ÄÇôϵ×BCµÄ³¤Îª10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÔÚ¡÷ABCÖУ¬Èç¹û¡ÏA£º¡ÏB£º¡ÏC=1£º2£º1£¬ÄÇô¡÷ABCµÄÐÎ×´ÊǵÈÑüÖ±½ÇÈý½ÇÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Ð¡Ã÷¡¢Ð¡ÁÁ¡¢Ð¡¸Õ¡¢Ð¡Ó±Ò»ÆðÑо¿Ò»µÀÊýѧÌ⣬Èçͼ£¬ÒÑÖªEF¡ÍAB£¬CD¡ÍAB£¬
СÃ÷˵£º¡°Èç¹û»¹ÖªµÀ¡ÏCDG=¡ÏBFE£¬ÔòÄܵõ½¡ÏAGD=¡ÏACB£®¡±
СÁÁ˵£º¡°°ÑСÃ÷µÄÒÑÖªºÍ½áÂÛµ¹¹ýÀ´£¬¼´ÓÉ¡ÏAGD=¡ÏACB£¬
¿ÉµÃµ½¡ÏCDG=¡ÏBFE£®¡±
С¸Õ˵£º¡°¡ÏAGDÒ»¶¨´óÓÚ¡ÏBFE£®¡±
Сӱ˵£º¡°Èç¹ûÁ¬½ÓGF£¬ÔòGFÒ»¶¨Æ½ÐÐÓÚAB£®¡±
ËûÃÇËÄÈËÖУ¬ÓÐÁ½¸öÈ˵Ä˵·¨ÊÇÕýÈ·µÄ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬ÌÝÐÎABCDÖУ¬AB¡ÎCD£¬¡ÏABC=90¡ã£¬AB=6£¬BC=8£¬tanD=2£¬µãEÊÇÉäÏßCDÉÏÒ»¶¯µã£¨²»ÓëµãCÖØºÏ£©£¬½«¡÷BCEÑØ×ÅBE½øÐз­ÕÛ£¬µãCµÄ¶ÔÓ¦µã¼ÇΪµãF£¬
£¨1£©Èçͼ1£¬µ±µãFÂäÔÚÌÝÐÎABCDµÄÖÐλÏßMNÉÏʱ£¬ÇóCEµÄ³¤£»
£¨2£©Èçͼ2£¬µ±µãEÔÙÏß¶ÎCDÉÏʱ£¬ÉèCE=x£¬$\frac{{S}_{¡÷BFC}}{{S}_{¡÷EFC}}$=y£¬ÇóyÓëxÖ®¼äµÄº¯Êý¹ØÏµÊ½£¬²¢Ð´³ö×Ô±äÁ¿xµÄȡֵ·¶Î§£»
£¨3£©Èçͼ3£¬Á¬½ÓAC£¬Ïß¶ÎBFÓëÉäÏßCA½»ÓÚµãG£¬µ±¡÷CBGÊǵÈÑüÈý½ÇÐÎʱ£¬ÇóCEµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸