分析 (1)根据根的判别式的意义得到△≥0,即(2m+3)2-4(m2+2)≥0,解不等式即可;
(2)根据根与系数的关系得到x1+x2=2m+3,x1x2=m2+2,再变形已知条件得到(x1+x2)2-4x1x2=31+|x1x2|,代入即可得到结果.
解答 解:(1)∵关于x的一元二次方程x2-(2m+3)x+m2+2=0有实数根,
∴△≥0,即(2m+3)2-4(m2+2)≥0,
∴m≥-$\frac{1}{12}$;
(2)根据题意得x1+x2=2m+3,x1x2=m2+2,
∵x12+x22=31+|x1x2|,
∴(x1+x2)2-2x1x2=31+|x1x2|,
即(2m+3)2-2(m2+2)=31+m2+2,
解得m=2,m=-14(舍去),
∴m=2.
点评 本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程根与系数的关系.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com