精英家教网 > 初中数学 > 题目详情
设x1、x2是关于x的方程x2-4x+k+1=0的两个实数根,试问:是否存在实数k,使得x1·x2 >x1+x2成立,请说明理由。
温馨提示
关于x的一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,则它的两个实数根是:
解:不存在,
因为一元二次方程有两个实根,由b2-4ac≥0,得16-4(k+1)≥0,
解得k≤3,
x1、x2是一元二次方程的两个实数根,
所以x1+x2=4,x1·x2=k+1,
而x1·x2>x1+x2,即k+1>4,
∴k>3,
所以不存在实数k,使得x1·x2>x1+x2成立。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、设x1、x2是关于x的一元二次方程x2+ax+a+3=0的两个实数根,则x12+x22的最小值为
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

设x1、x2是关于x的一元二次方程x2+ax+a=2的两个实数根,则(x1-2x2)(x2-2x1)的最大值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

设x1,x2是关于x的一元二次方程x2+x+n-2=mx的两个实数根,且x1<0,x2-3x1<0,则(  )
A、
m>1
n>2
B、
m>1
n<2
C、
m<1
n>2
D、
m<1
n<2

查看答案和解析>>

科目:初中数学 来源: 题型:

设x1,x2是关于x的一元二次方程x2+2ax+a2+4a-2=0的两实根,当a为何值时,x12+x22有最小值?最小值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

22、设x1、x2是关于x的方程x2-4x+k+1=0的两个实数根.问:是否存在实数k,使得3x1•x2-x1>x2成立,请说明理由.

查看答案和解析>>

同步练习册答案