精英家教网 > 初中数学 > 题目详情

如图,已知:抛物线与x轴交于A、B两点,与y轴交于点C,经过B、C两点的直线是,连结AC.

(1)B、C两点坐标分别为B(________,________)、C(________,________),抛物线的函数关系式为________;

(2)判断△ABC的形状,并说明理由;

(3)在△ABC内部能否截出面积最大的矩形DEFC(顶点D、E、F、G在△ABC各边上)?若能,求出在AB边上的矩形顶点的坐标;若不能,请说明理由.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•利川市一模)如图,已知:抛物线y=ax2+bx-4(a≠0)与x轴交于A、B两点,与y轴交于点C,A、B两点的坐标分别为A(-6,0)、B(2,0).
(1)求这条抛物线的函数表达式;
(2)已知在抛物线的对称轴上存在一点P,使得PB+PC的值最小,请求出点P的坐标;
(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:抛物线与坐标轴相交于点A、B、C,顶点D的坐标为D(-1,4),又知C(-4,0)
(1)求此抛物线的解析式.
(2)设直线BD与y轴相交于点E,求线段AE的长.
(3)设P(t,0)是线段CB上的一个动点,用S表示四边形CPED的面积.试求S关于t的函数关系式,写出自变量t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:抛物线x轴相交于A、B两点,与y轴相交于点C,并且OA = OC.

(1)求这条抛物线的解析式;

(2)过点CCE // x轴,交抛物线于点E,设抛物线的顶点为点D,试判断△CDE的形状,并说明理由;

(3)设点M在抛物线的对称轴l上,且△MCD的面积等于△CDE的面积,请写出点M的坐标(无需写出解题步骤).

查看答案和解析>>

科目:初中数学 来源:2009-2010学年浙江省丽水市云和二中九年级(上)期中数学试卷(解析版) 题型:解答题

如图,已知:抛物线与坐标轴相交于点A、B、C,顶点D的坐标为D(-1,4),又知C(-4,0)
(1)求此抛物线的解析式.
(2)设直线BD与y轴相交于点E,求线段AE的长.
(3)设P(t,0)是线段CB上的一个动点,用S表示四边形CPED的面积.试求S关于t的函数关系式,写出自变量t的取值范围.

查看答案和解析>>

同步练习册答案