分析 由条件可求得∠BAD=∠CAE,再利用SAS可证明△BAD≌△CAE,可求得BD=CE,据此填空即可.
解答 解:
∵∠1=∠2(已知),
∴∠1+∠BAE=∠2+∠BAE,
即:∠BAD=∠CAE,
在△BAD和△CAE中
$\left\{\begin{array}{l}{AB=AC(已知)}\\{∠BAD=∠CAE}\\{AD=AE(已知)}\end{array}\right.$
∴△BAD≌△CAE(SAS)
∴BD=CE(全等三角形的对应边相等).
故答案为:已知;BAE;已知;已知;SAS;全等三角形的对应边相等.
点评 本题主要考查全等三角形的判定和性质,掌握全等三角形判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即对应边相等、对应角相等)是解题的关键.
科目:初中数学 来源: 题型:解答题
| 月份 | 用水量(m3) | 收费(元) |
| 9 | 5 | 7.5 |
| 10 | 9 | 27 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com