精英家教网 > 初中数学 > 题目详情
如图,在梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别是AB、BC、CD、DA的中点.
(1)求证:四边形EFGH是正方形;
(2)若AD=2,BC=4,求四边形EFGH的面积.

证明:(1)在△ABC中,E、F分别是AB、BC的中点,
故可得:EF=AC,同理FG=BD,GH=AC,HE=BD,
在梯形ABCD中,AB=DC, 故AC=BD,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形.
设AC与EH交于点M, 在△ABD中,E、H分别是AB、AD的中点,
则EH∥BD, 同理GH∥AC,
又∵AC⊥BD,
∴∠BOC=90°,
∴∠EHG=∠EMC=90°,
∴四边形EFGH是正方形.
(2)连接EG. 在梯形ABCD中,
∵E、F分别是AB、DC的中点,
∴EG=(AD+BC)=3.
在Rt△EHG中,
∵EH2+GH2=EG2,EH=GH,
∴EH2=
即四边形EFGH的面积为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案