证明:(1)在△ABC中,E、F分别是AB、BC的中点,
故可得:EF=
AC,同理FG=
BD,GH=
AC,HE=
BD,
在梯形ABCD中,AB=DC, 故AC=BD,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形.
设AC与EH交于点M, 在△ABD中,E、H分别是AB、AD的中点,
则EH∥BD, 同理GH∥AC,
又∵AC⊥BD,
∴∠BOC=90°,
∴∠EHG=∠EMC=90°,
∴四边形EFGH是正方形.
(2)连接EG. 在梯形ABCD中,
∵E、F分别是AB、DC的中点,
∴EG=
(AD+BC)=3.
在Rt△EHG中,
∵EH2+GH2=EG2,EH=GH,
∴EH2=
,
即四边形EFGH的面积为
.
科目:初中数学 来源: 题型:
| A、3cm | B、7cm | C、3cm或7cm | D、2cm |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com