精英家教网 > 初中数学 > 题目详情

【题目】如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF=cm.

【答案】
【解析】解:
连接BD、AC,
∵四边形ABCD是菱形,
∴AC⊥BD,AC平分∠BAD,
∵∠BAD=120°,
∴∠BAC=60°,
∴∠ABO=90°﹣60°=30°,
∵∠AOB=90°,
∴AO= AB= ×2=1,
由勾股定理得:BO=DO=
∵A沿EF折叠与O重合,
∴EF⊥AC,EF平分AO,
∵AC⊥BD,
∴EF∥BD,
∴EF为△ABD的中位线,
∴EF= BD= + )=
故答案为:
根据菱形性质得出AC⊥BD,AC平分∠BAD,求出∠ABO=30°,求出AO,BO、DO,根据折叠得出EF⊥AC,EF平分AO,推出EF∥BD,推出,EF为△ABD的中位线,根据三角形中位线定理求出即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算:(3.14﹣π)0+|1﹣ |+(﹣ 1﹣2sin60°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知x﹣ =3,则4﹣ x2+ x的值为(
A.1
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)计算:
(2)先化简,再求代数式的值: ,其中m=1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AC= ,BC=3,△DEF是边长为a(a为小于3的常数)的等边三角形,将△DEF沿AC方向平移,使点D在线段AC上,DE∥AB,设△DEF与△ABC重叠部分的周长为T.

(1)求证:点E到AC的距离为一个常数;
(2)若AD= ,当a=2时,求T的值;
(3)若点D运动到AC的中点处,请用含a的代数式表示T.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小丽驾车从甲地到乙地.设她出发第xmin时的速度为ykm/h,图中的折线表示她在整个驾车过程中y与x之间的函数关系.
(1)小丽驾车的最高速度是km/h;
(2)当20≤x≤30时,求y与x之间的函数关系式,并求出小丽出发第22min时的速度;
(3)如果汽车每行驶100km耗油10L,那么小丽驾车从甲地到乙地共耗油多少升?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.
(1)求证:四边形BFDE为平行四边形;
(2)若四边形BFDE为菱形,且AB=2,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关x的函数y=kx2+2x-1的图像与x轴仅有一个交点,则实数k的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+2(m+l)x﹣m+1.以下四个结论:
①不论m取何值,图象始终过点( ,2 );
②当﹣3<m<0时,抛物线与x轴没有交点:
③当x>﹣m﹣2时,y随x的增大而增大;
④当m=﹣ 时,抛物线的顶点达到最高位置.
请你分别判断四个结论的真假,并给出理由.

查看答案和解析>>

同步练习册答案