精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠ACB=90°,AC= ,BC=3,△DEF是边长为a(a为小于3的常数)的等边三角形,将△DEF沿AC方向平移,使点D在线段AC上,DE∥AB,设△DEF与△ABC重叠部分的周长为T.

(1)求证:点E到AC的距离为一个常数;
(2)若AD= ,当a=2时,求T的值;
(3)若点D运动到AC的中点处,请用含a的代数式表示T.

【答案】
(1)

解:由题意得:tanA= = =

∴∠A=60°.

∵DE∥AB,

∴∠CDE=∠A=60°.

如答图1所示,过点E作EH⊥AC于点H,

则EH=DEsin∠CDE=a = a.

∴点E到AC的距离为一个常数


(2)

解:若AD= ,当a=2时,如答图2所示.

设AB与DF、EF分别交于点M、N.

∵△DEF为等边三角形,∴∠MDE=60°,

由(1)知∠CDE=60°,

∴∠ADM=180°﹣∠MDE﹣∠CDE=60°,

又∵∠A=60°,

∴△ADM为等边三角形,

∴DM=AD=

过点M作MG∥AC,交DE于点G,则∠DMG=∠ADM=60°,

∴△DMG为等边三角形,

∴DG=MG=DM=

∴GE=DE﹣DG=2﹣ =

∵∠MGD=∠E=60°,∴MG∥NE,

又∵DE∥AB,

∴四边形MGEN为平行四边形.

∴NE=MG= ,MN=GE=

∴T=DE+DM+MN+NE=2+ + + =


(3)

解:若点D运动到AC的中点处,分情况讨论如下:

①若0<a≤ ,△DEF在△ABC内部,如答图3所示:

∴T=3a;

②若 <a≤ ,点E在△ABC内部,点F在△ABC外部,在如答图4所示:

设AB与DF、EF分别交于点M、N,过点M作MG∥AC交DE于点G.

与(2)同理,可知△ADM、△DMG均为等边三角形,四边形MGEN为平行四边形.

∴DM=DG=NE=AD= ,MN=GE=DE﹣DG=a﹣

∴T=DE+DM+MN+NE=a+ +(a﹣ )+ =2a+

③若 <a<3,点E、F均在△ABC外部,如答图5所示:

设AB与DF、EF分别交于点M、N,BC与DE、EF分别交于点P、Q.

在Rt△PCD中,CD= ,∠CDP=60°,∠DPC=30°,

∴PC=CDtan60°= × =

∵∠EPQ=∠DPC=30°,∠E=60°,∴∠PQE=90°.

由(1)知,点E到AC的距离为 a,∴PQ= a﹣

∴QE=PQtan30°=( a﹣ )× = a﹣ ,PE=2QE=a﹣

由②可知,四边形MDEN的周长为2a+

∴T=四边形MDEN的周长﹣PE﹣QE+PQ=(2a+ )﹣(a﹣ )﹣( a﹣ )+( a﹣ )= a+

综上所述,若点D运动到AC的中点处,T的关系式为:

T=


【解析】(1)解直角三角形,求得点E到AC的距离等于 a,这是一个定值;(2)如答图2所示,作辅助线,将四边形MDEN分成一个等边三角形和一个平行四边形,求出其周长;(3)可能存在三种情形,需要分类讨论:①若0<a≤ ,△DEF在△ABC内部,如答图3所示;②若 <a≤ ,点E在△ABC内部,点F在△ABC外部,在如答图4所示;③若 <a<3,点E、F均在△ABC外部,如答图5所示.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数y1=k1x+b与反比例函数 的图象相交于A,B两点,且与坐标轴的交点为(﹣6,0),(0,6),点B的横坐标为﹣4.
(1)试确定反比例函数的解析式;
(2)求△AOB的面积;
(3)直接写出不等式 的解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连接PQ,M为PQ中点.

(1)求证:△ADP∽△ABQ;
(2)若AD=10,AB=20,点P在边CD上运动,设DP=x,BM2=y,求y与x的函数关系式,并求线段BM的最小值;
(3)若AD=10,AB=a,DP=8,随着a的大小的变化,点M的位置也在变化.当点M落在矩形ABCD外部时,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小李与小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法: 1)他们都行驶了20km;
2)小陆全程共用了1.5h;
3)小李与小陆相遇后,小李的速度小于小陆的速度;
4)小李在途中停留了0.5h.
其中正确的有(

A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果批发市场将一批苹果分为A,B,C,D四个等级,统计后将结果制成条形图,已知A等级苹果的重量占这批苹果总重量的30%. 回答下列问题:

(1)这批苹果总重量为kg;
(2)请将条形图补充完整;
(3)若用扇形图表示统计结果,则C等级苹果所对应扇形的圆心角为度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF=cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=a(x﹣m)2﹣a(x﹣m)(a,m为常数,且a≠0).
(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点.
(2)设该函数的图象的顶点为C,与x轴交于A,B两点,与y轴交于D点.
①当△ABC的面积为1时,求a的值.
②当△ABC的面积与△ABD的面积相等时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.
(1)求y1的解析式;
(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BM是⊙O的直径,四边形ABMN是矩形,D是⊙O上的点,DC⊥AN,与AN交于点C,己知AC=15,⊙O的半径为30,求 的长.

查看答案和解析>>

同步练习册答案