精英家教网 > 初中数学 > 题目详情
19、如图,在等边△ABC中,AC=6,点O在AC上,且AO=2,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是多少?
分析:根据旋转的性质以及等边三角形的性质得出DO=OP,AP=CO即可得出答案.
解答:解:∵在等边△ABC中,AC=6,点O在AC上,且AO=2,将线段OP绕点O逆时针旋转60°得到线段OD,使点D恰好落在BC上,
∴DO⊥BC时,符合要求,
∴∠C=60°,CO=4,∠COD=30°,
∴CD=2,
∵AO=2,OP=OD,
∴△AOP≌△CDO,
∴AP=CO=4.
点评:本题主要考查了旋转的性质以及等边三角形的性质,根据题意得出DO=OP,AP=CO是解决问题的关键,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,在等边△ABC的边BC上任取一点D,作∠ADE=60°,DE交∠C的外角平分线于E,则△ADE是
等边
三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的面积为(  )
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,在等边△ABC中,AD是∠BAC的平分线,点E在AC边上,且∠EDC=15°.
(1)试说明直线AD是线段BC的垂直平分线;
(2)△ADE是什么三角形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边△ABC中,D是AC的中点,延长BC到点E,使CE=CD,AB=10cm.
(1)求BE的长;
(2)△BDE是什么三角形,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边△ABC中,BF是高,D是BF上一点,且OF=AF,作OE⊥BF,垂足为D,且OE=OB,连AE、AO、BE,求证:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步练习册答案