精英家教网 > 初中数学 > 题目详情

已知:如图,AB∥CD,AB=CD,点E、F在线段AD上,且AF=DE.求证:BE=CF.

证明:∵AF=DE,
∴AF-EF=DE-EF,
即 AE=DF,
∵AB∥CD,
∴∠A=∠D,
在△ABE和△DCF中,

∴△ABE≌△DCF,
∴BE=CF.
分析:由于AF=DE,根据等式性质可得AE=DF,再根据AB∥CD,易得∠A=∠D,而AB=CD,根据SAS可证△ABE≌△DCF,于是BE=CF.
点评:本题考查了全等三角形的判定和性质,解题的关键是找出SAS的三个条件,证明△ABE≌△DCF.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、已知:如图,AB、AC分别切⊙O于B、C,D是⊙O上一点,∠D=40°,则∠A的度数等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB,CD相交于点O,且OA•OD=OB•OC,求证:AC∥DB.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB是⊙O的直径,AC是弦,直线EF是过点C的⊙O的切线,AD⊥EF于点D.
(1)求证:∠BAC=∠CAD;
(2)若∠B=30°,AB=12,求
AC
的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

29、已知,如图,AB∥CD,∠EAB+∠FDC=180°.求证:AE∥FD.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB=AC,DB=DC,求证:∠B=∠C.

查看答案和解析>>

同步练习册答案