精英家教网 > 初中数学 > 题目详情

【题目】如图,在平行四边形ABCD中,AB=3,AD=4 ,AF交BC于E,交DC的延长线于F,且CF=1,则CE的长为

【答案】
【解析】解:∵四边形ABCD为平行四边形, ∴AB=CD=3,BC∥AD,
∵E为BC上一点,
∴CE∥AD,∠FEC=∠FAD,∠FCE=∠D,
∴△FCE∽△FDA,
= =
又∵CD=3,CF=1,AD=4
∴CE=
所以答案是:
【考点精析】认真审题,首先需要了解平行四边形的性质(平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分),还要掌握相似三角形的判定与性质(相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为测量某特种车辆的性能,研究制定了行驶指数P,P=K+1000,而K的大小与平均速度v(km/h)和行驶路程s(km)有关(不考虑其他因素),K由两部分的和组成,一部分与v2成正比,另一部分与sv成正比.在实验中得到了表格中的数据:

速度v

40

60

路程s

40

70

指数P

1000

1600


(1)用含v和s的式子表示P;
(2)当行驶指数为500,而行驶路程为40时,求平均速度的值;
(3)当行驶路程为180时,若行驶指数值最大,求平均速度的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算: ﹣|2 ﹣9tan30°|+( 1﹣(1﹣π)0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.

(1)求此二次函数解析式;
(2)连接DC、BC、DB,求证:△BCD是直角三角形;
(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一枚运载火箭从地面O处发射,当火箭到达A点时,从地面C处的雷达站测得AC的距离是6km,仰角是43°,1s后,火箭到达B点,此时测得仰角为45.5°,这枚火箭从点A到点B的平均速度是多少?(结果精确到0.01)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘刚在南海巡航的渔政船前往救援.当飞机到达距离海面3000米的高空C处,测得A处渔政船的俯角为60°,测得B处发生险情渔船的俯角为30°,请问:此时渔政船和渔船相距多远?(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,直线y=x+1与y轴相交于点A1 , 以OA1为边作正方形OA1B1C1 , 记作第一个正方形;然后延长C1B1与直线y=x+1相交于点A2 , 再以C1A2为边作正方形C1A2B2C2 , 记作第二个正方形;同样延长C2B2与直线y=x+1相交于点A3 , 再以C2A3为边作正方形C2A3B3C3 , 记作第三个正方形;…,依此类推,则第n个正方形的边长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在Rt△ABC中,AB=AC=3 ,在△ABC内作第一个内接正方形DEFG;然后取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,则第2014个内接正方形的边长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.

查看答案和解析>>

同步练习册答案