精英家教网 > 初中数学 > 题目详情

如图,抛物线y=x2与直线相交于OA两点,点P沿着抛物线从点A出发,按横坐标大于点A的横坐标方向运动,PS∥x轴,交直线OA于点SPQ⊥x轴,SR⊥x轴,垂足为QR

(1)当点P的横坐标为2时,回答下面问题:

①求S点的坐标.②求通过原点,且平分矩形PQRS面积的直线解析式.

(2)当矩形PQRS为正方形时,求点P的坐标.

答案:
解析:

  (1)①当时,,代入得,点S的坐标为(8,4).②由题意可得,点PQR的坐标分别为P(2,4),Q(2,0),R(8,0),连QS,则QS中点的坐标为(5,2),则通过原点,且平分矩形PQRS面积的直线解析式为

  (2)由于点P在抛物线上,可设点P的坐标为P(),则点S的坐标为S(),所以,解得:(不合题意,舍去),即当矩形PQRS为正方形时,P点的坐标为P(1,1).


练习册系列答案
相关习题

科目:初中数学 来源:江苏中考真题 题型:解答题

如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3.
(1)求抛物线所对应的函数解析式;
(2)求△ABD的面积;
(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由。

查看答案和解析>>

科目:初中数学 来源:2013年浙江省金华市六校联谊中考模拟数学试卷(带解析) 题型:填空题

如图,抛物线y=x2x与x轴交于O,A两点. 半径为1的动圆(⊙P),圆心从O点出发沿抛物线向靠近点A的方向移动;半径为2的动圆(⊙Q),圆心从A点出发沿抛物线向靠近点O的方向移动. 两圆同时出发,且移动速度相等,当运动到P,Q两点重合时同时停止运动. 设点P的横坐标为t .

(1)点Q的横坐标是         (用含t的代数式表示);
(2)若⊙P与⊙Q 相离,则t的取值范围是          .

查看答案和解析>>

科目:初中数学 来源:2013年浙江省金华市六校联谊中考模拟数学试卷(解析版) 题型:填空题

如图,抛物线y=x2x与x轴交于O,A两点. 半径为1的动圆(⊙P),圆心从O点出发沿抛物线向靠近点A的方向移动;半径为2的动圆(⊙Q),圆心从A点出发沿抛物线向靠近点O的方向移动. 两圆同时出发,且移动速度相等,当运动到P,Q两点重合时同时停止运动. 设点P的横坐标为t .

(1)点Q的横坐标是         (用含t的代数式表示);

(2)若⊙P与⊙Q 相离,则t的取值范围是          .

 

查看答案和解析>>

科目:初中数学 来源:2012-2013学年江苏省仪征市九年级上学期末考试数学试卷(解析版) 题型:解答题

如图,抛物线y=x2+bx+c与x轴交于点A、B(点A在点B左侧),与y轴交于点C(0,-3),且抛物线的对称轴是直线x=1.

(1)求b的值;

(2)点E是y轴上一动点,CE的垂直平分线交y轴于点F,交抛物线于P、Q两点,且点P在第三象限.当线段PQ = AB时,求点E的坐标;

(3)若点M在射线CA上运动,过点M作MN⊥y轴,垂足为N,以M为圆心,MN为半径作⊙M,当⊙M与x轴相切时,求⊙M的半径.

 

查看答案和解析>>

科目:初中数学 来源:2012届江苏省苏州工业园区九年级上学期期中测试数学卷 题型:选择题

如图,抛物线y=x2+1与双曲线y=的交点A的横坐标是1,则关于x的不等式+x2+1 < 0的解集是( ▲ )

A.x>1            B.x<−1            C.0<x<1          D.−1<x<0

 

查看答案和解析>>

同步练习册答案