精英家教网 > 初中数学 > 题目详情

如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.

(1)求证:四边形AMDN是平行四边形.
(2)当AM的值为何值时,四边形AMDN是矩形?请说明理由.

(1)见解析  (2)AM=1。理由见解析

解析试题分析:(1)根据菱形的性质可得ND∥AM,从而可得∠NDE=∠MAE,∠DNE=∠AME,根据中点的定义求出DE=AE,然后利用“角角边”证明△NDE和△MAE全等,根据全等三角形对应边相等得到ND=MA,然后利用一组对边平行且相等的四边形是平行四边形证明。
(2)根据矩形的性质得到DM⊥AB,再求出∠ADM=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半解答。 
解:(1)证明:∵四边形ABCD是菱形,∴ND∥AM。
∴∠NDE=∠MAE,∠DNE=∠AME。
∵点E是AD中点,∴DE=AE。
∵在△NDE和△MAE中,∠NDE=∠MAE,∠DNE=∠AME,DE=AE,
∴△NDE≌△MAE(AAS)。∴ND=MA。
∴四边形AMDN是平行四边形。
(2)AM=1。理由如下:
∵四边形ABCD是菱形,∴AD=AB=2。
若平行四边形AMDN是矩形,则DM⊥AB,即∠DMA=90°。
∵∠A=60°,∴∠ADM=30°。∴AM=AD=1。

练习册系列答案
相关习题

科目:初中数学 来源:浙教版(2014) 八年级下 题型:

如图,在正方形ABCD中,E为边AD的中点,且DF∶CF=1∶3,连接EF并延长交BC的延长线于点G,

(1)求证:△ABE~△DEF

(2)若正方形的边长为4,求BG的长.

查看答案和解析>>

科目:初中数学 来源:北师大版(新课标) 九年级(下) 题型:

如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线yx2k与扇形OAB的边界总有两个公共点,则实数k的取值范围是________

查看答案和解析>>

科目:初中数学 来源: 题型:计算题

(11·湖州)(本小题6分)计算:︱-2︱-2sin30°+

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

矩形纸片ABCD的边长AB=8,AD=4,将矩形纸片沿EF折叠,使点A与点C重合,折叠后在某一面着色(如图),则着色部分的面积为(  )

A.16 B. C.22 D.8

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知四边形ABCD是平行四边形,P、Q是对角线BD上的两个点,且AP∥QC.求证:BP=DQ.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.
(1)求证:四边形ADBE是矩形;
(2)求矩形ADBE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,两个高度相等的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点的距离是(   )

A.B.C.D.

查看答案和解析>>

同步练习册答案