【题目】如图,在四边形ABCD中,AD∥BC,∠ABC的平分线交CD于点E.
(1)若∠A=70°,求∠ABE的度数;
(2)若AB∥CD,且∠1=∠2,判断DF和BE是否平行,并说明理由.
【答案】(1)∠ABE=55°;(2)证明见解析
【解析】试题分析:(1)由平行线的性质可求得∠ ABC =110°,由角平分线的定义可求得∠ABE=55°;(2)DF∥BE,理由:由AB∥ CD,根据平行线的性质可得∠A+∠ADC=180°,∠2=∠AFD,再由AD∥ BC,根据平行线的性质可得∠A+∠ABC=180°,所以∠ADC=∠ABC,再由∠1=∠2=∠ADC,∠ABE=∠ABC,可得∠2=∠ABE,所以∠AFD =∠ABE,即可判定DF∥BE.
试题解析:
(1)解:∵AD∥BC,∠A=70°
∴∠ ABC=180°-∠ A=110°
∵BE平分∠ABC
∴∠ABE=∠ABC=55°
(2)证明:DF∥BE
∵AB∥ CD
∴∠A+∠ADC=180°,∠2=∠AFD
∵AD∥ BC
∴∠A+∠ABC=180°
∴∠ADC=∠ABC
∵∠1=∠2=∠ADC,∠ABE=∠ABC
∴∠2=∠ABE
∴∠AFD =∠ABE
∴DF∥BE
科目:初中数学 来源: 题型:
【题目】地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为( )
A. 64×105 B. 6.4×105 C. 6.4×106 D. 6.4×107
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:
①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.
其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知边长为3的正方形ABCD中,点E在射线BC上,且BE=2CE,连结AE交射线DC于点F,将△ABE沿直线AE翻折,点B落在点B1处.
(1)如图1,若点E在线段BC上,求CF的长;
(2)求sin∠DAB1的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com