精英家教网 > 初中数学 > 题目详情
14.如图,菱形ABCD的边长为6,M、N分别是边BC、CD上的点,且MC=2MB,ND=2NC,点P是对角线BD上一点,则PM+PN的最小值是6.

分析 作M关于BD的对称点M′交AB于M′,连接M′N交BD于P,则M′N=PM+PN的最小值,根据平行四边形的判定定理得到四边形BCNM′是平行四边形,得到M′N=BC=6,于是得到结论.

解答 解:作M关于BD的对称点M′交AB于M′,连接M′N交BD于P,
则M′N=PM+PN的最小值,
∵MC=2MB,ND=2NC,
∴BM=CN=2,
∴BM′=2,
∴BM′=CN,
∵BM′∥CN,
∴四边形BCNM′是平行四边形,
∴M′N=BC=6,
∴PM+PN的最小值=6,
故答案为:6.

点评 本题考查的是轴对称-最短路线问题及菱形的性质和勾股定理的运用,熟知两点之间线段最短的知识是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,△ABC和△CEF均为等腰直角三角形,E在△ABC内,∠CAE+∠CBE=90°,连接BF.
(1)求证:△CAE∽△CBF;
(2)若BE=1,AE=2,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,则89-1结果的个位数字是7.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.阅读材料,解决问题:
材料1:在研究数的整除时发现:能被5、25、125、625整除的数的特征是:分别看这个数的末一位、末两位、末三位、末四位即可,推广成一条结论;末n位能被5n整除的数,本身必能被5n整除,反过来,末n位不能被5n整除的数,本身也不可能被5n整除,例如判断992250能否被25、625整除时,可按下列步骤计算:
∵25=52,50÷25=2为整数,∴992250能被25整除
∵625=54,2250÷625=3.6不为整数,∴992250不能被625整除
材料2:用奇偶位差法判断一个数能否被11这个数整除时,可把这个数的奇位上的数字与偶位上的竖直分别加起来,再求它们的差,看差能否被11整除,若差能被11整除,则原数能被11整除,反之则不能
(1)若$\overline{6m2}$这个三位数能被11整除,则m=8;在该三位数末尾加上和为8的两个数字,让其成为一个五位数,该五位数仍能被11整除,求这个五位数
(2)若$\overline{5abcde}$这个六位数,千位数字是个位数字的2倍,且这个数既能被125整除,又能被11整除,求这个数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,AB是⊙O的直径,C、D为⊙O上不同于A、B两点,并且C、D位于直径AB的两侧,CA=CD
(1)如图1,求证:∠ABD=2∠BDC;
(2)如图2,AB、CD交于点E,过点E作EF⊥DB于点F,延长FE交AC于点M,求证:CE=CM;
(3)在(2)的条件下,若tan∠CDB=$\frac{1}{2}$,EB=5,求线段CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,反比例函数y1=$\frac{k}{x}$(0<k<3,x>0)与y2=$\frac{3}{x}$(x>0)的图象如图所示,反比例函数y1的图象上有一点A,其横坐标为a,过点A作x轴的平行线交反比例函数y2的图象于点B,连接AO、BO,若△ABO的面积为S,则S关于a的大致函数图象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.为抵制乐天,吸引顾客,某商场进行一个有奖销售的促销活动,设立了一个可以自由转动的转盘,并规定,顾客购物200元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品(若指针落在两个区域的交界处,则重新转动转盘).下表是此次促销活动中的一组统计数据:
转动转盘的次数n1002004005008001000
落在“可乐”区域的次数m72142278355b701
落在“可乐”区域的频率$\frac{m}{n}$0.72 0.71 0.695 0.7050.701 
(1)计算上述表格中a、b的值.a=0.71,b=564;
(2)请估计当n很大时,落在“可乐”区域的频率将会接近0.7;假如你去转动该转盘一次,你获得“可乐”的概率约是0.7;(结果全部精确到0.1)
(3)在该转盘中,表示“电吹风”区域的扇形的圆心角a约是多少度?(结果精确到1°)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.“爱心是人间真情所在”!现用“?”定义一种运算,对任意实数m、n和抛物线y=ax2,当y=ax2?(m,n)后都可得到y=a(x-m)2+n.当y=x2?(m,n)后得到了新函数的图象(如图所示),则nm=2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.已知点A(2,-2),B(-1,-2),则直线AB与x轴的位置关系是(  )
A.相交B.平行C.相互垂直D.不能确定

查看答案和解析>>

同步练习册答案