2
分析:设⊙O半径是r,连接OA、OB、OC、OD、OE、OF,根据勾股定理求出AB,根据三角形的面积公式得出S
△ACB=S
△OAC+S
△OBC+S
△OAB,代入求出即可.
解答:

解:设⊙O半径是r,
连接OA、OB、OC、OD、OE、OF,
∵⊙O为△ABC的内切圆,切点是D、E、F,
∴OD⊥AC,OE⊥AB,OF⊥BC,OD=OE=OF=r,
∵AC=8,BC=6,由勾股定理得:AB=10,
根据三角形的面积公式得:S
△ACB=S
△OAC+S
△OBC+S
△OAB,
∴AC×BC=AC×r+BC×r+AB×r,即:6×8=6r+8r+10r,
∴r=2.
故⊙O半径是2.
故答案为:2.
点评:本题主要考查了切线的性质,三角形的内切圆与内心,三角形的面积等知识点的理解和掌握,能得出S
△ACB=S
△OAC+S
△OBC+S
△OAB是解此题的关键.