精英家教网 > 初中数学 > 题目详情
在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则∠MND的度数为   °.
22.5°

试题分析:利用等腰直角三角形的性质,求出∠B=∠C=45°,利用切线的性质,求出∠ODB=90°.
又∵∠BOD=∠OND+∠ODN ∵OD="ON," ∴∠OND=∠ODN=22.5°
试题解析:∵等腰直角三角形ABC∴∠A="90°" AB=AC ∴∠B=∠C=45°
又∵AB与⊙O相切于点D,∴∠ODB="90°" ∴∠DOB=45°又∵∠BOD=∠OND+∠ODN
又∵OD=ON ∴∠OND=∠ODN=22.5°
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是菱形,点E在BC上,,试在AE上确定一点G,使△ABG≌△DAF.请你写出两种确定点G的方案,并就其中一种方案的具体作法证明△ABG≌△DAF.
方案一:作法:                                         ;
方案二:(1)作法:                                        
(2)证明:

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接CF.
(1)求证:四边形ABDF是平行四边形;
(2)若∠CAF=45°,BC=4,CF=,求△CAF的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平行四边形ABCD中,上两点,且
求证:(1)
(2)四边形是矩形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.
(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.
(2)在探究“等对角四边形”性质时:
①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;
②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.
(3)已知:在“等对角四边形"ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下面关于直角三角形的全等的判定,不正确的是(      ).
A.有一锐角和一边对应相等的两个直角三角形全等
B.有两边对应相等的两个直角三角形全等
C.有两角对应相等,且有一条公共边的两个直角三角形全等
D.有两角和一边对应相等的两个直角三角形全等

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C. 则A′C长度的最小值是       .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平行四边ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是       (把所有正确结论的序号都填在横线上)
(1)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行(  )
A.8米B.10米C.12米D.14米

查看答案和解析>>

同步练习册答案