精英家教网 > 初中数学 > 题目详情
现有一副三角板,如图①中,∠B=90°,∠A=30°;图②中,∠D=90°,∠F=45°;图③中,将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动(移动开始时点D与点A重合).
(1)△DEF在移动的过程中,若D、E两点始终在AC边上,
①F、C两点间的距离逐渐
 
;连接FC,∠FCE的度数逐渐
 
.(填“不变”、“变大”或“变小”)
②∠FCE与∠CFE度数之和是否为定值,请加以说明;
(2)△DEF在移动的过程中,如果D、E两点在AC的延长线上,那么∠FCE与∠CFE之间又有怎样的数量关系,请直接写出结论;
(3)能否将△DEF移动至某位置,使F、C的连线与BC垂直?求出∠CFE的度数.
考点:平移的性质,垂线,三角形的外角性质
专题:
分析:(1)①利用图形的变化得出F、C两点间的距离变化和,∠FCE的度数变化规律;
②利用外角的性质得出∠FCE+∠CFE=∠FED=45°,即可得出答案;
(2)利用外角的性质得出∠FCE+∠CFE=∠FEG=135°,即可得出答案;
(3)要使FC⊥BC,则需∠FCE=∠A=30°,进而得出∠CFE的度数.
解答:解:(1)①F、C两点间的距离逐渐变小;连接FC,∠FCE的度数逐渐变大;
故答案为:变小,变大;
②∠FCE与∠CFE度数之和为定值;
理由:∵∠D=90°,∠DFE=45°,
又∵∠D+∠DFE+∠FED=180°,
∴∠FED=45°,
∵∠FED是△FEC的外角,
∴∠FCE+∠CFE=∠FED=45°,
即∠FCE与∠CFE度数之和为定值;

(2)如图,∠FCE与∠CFE度数之和为定值;
理由:∵∠FDE=90°,∠F=45°,
又∵∠FDE+∠F+∠FED=180°,
∴∠FED=45°,
∵∠FEG是△FEC的外角,
∴∠FCE+∠CFE=∠FEG=135°,
即∠FCE与∠CFE度数之和为定值;


(3)要使FC⊥BC,则需∠FCE=∠A=30°,
又∵∠CFE+∠FCE=45°,
∴∠CFE=45°-30°=15°.
点评:此题主要考查了三角形的外角以及平行线的判定和三角形内角和定理等知识,熟练利用相关定理是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,将左图中的阴影部分裁剪下来,重新拼成一个如右图的长方形.
(1)根据两个图中阴影部分的面积相等,可以得到一个数学公式
 
,这个公式的名称叫
 

(2)根据你在(1)中得到的公式计算下列算式:(1-
1
22
)(1-
1
32
)(1-
1
42
)(1-
1
52
)…(1-
1
992
)(1-
1
1002
).

查看答案和解析>>

科目:初中数学 来源: 题型:

解不等式:
x
3
-
1
2
(x-1)≥1

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠B=90°,BC=5
3
,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向A点匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.
(1)AC的长是
 
,AB的长是
 

(2)在D、E的运动过程中,线段EF与AD的关系是否发生变化?若不变化,那么线段EF与AD是何关系,并给予证明;若变化,请说明理由.
(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
(4)当t为何值,△BEF的面积是2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x为偶数,且
x-1
3-x
=
x-1
3-x
,y=
1-2x+x2
+
4x+1
,求代数式
x
y
+
y
x
+2
-
x
y
+
y
x
-2
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

作图:请在所给的数轴上作出表示
5
的点(保留作图痕迹,不写作法).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=76°,∠C=26°.
(1)求∠BAE的度数;
(2)求∠DAE的度数;
(3)探究:小明认为如果条件中没有“∠B=76°,∠C=26°”,只知道∠B-∠C=50°,也能得出∠DAE的度数.你认为可以吗?若能,请你写出求解过程;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB∥CD,分别探究下面两个图形中∠APC和∠PAB,∠PCD的关系,请你从所得两个结论中任意选出一个,说明你所探究的结论的正确性.
结论:(1)
 

(2)
 

选择结论
 
,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如果一边长为30cm的等边三角形硬纸板刚好能不受损地从用铁丝围成的圆形铁圈中穿过,那么铁圈直径的最小值为
 
cm(铁丝粗细忽略不计).

查看答案和解析>>

同步练习册答案